
Method for extended C++ exception features to handle OS signal exceptions

Disclosed is a method for extended C++ exception features to handle operating system (OS)
signal exceptions. Benefits include improved functionality, improved reliability, and improved
portability.

Background

 The C++ programming language is standardized by a specification titled “Programming
languages - C++”, 14882:1998, dated September 1998 by American National Standards
Institute, Inc.

 Conventionally, the C++ programming language provides intrinsic exception handling
features. However, the features are somewhat limited in capability. The only exceptions that can
be processed (caught) are those explicitly issued (thrown) by the program. No intrinsic support is
provided for unexpected errors that are signaled by hardware or the operating system.

 Each catch block handles a particular type of exception that can be raised by a C++ throw
operator code in the try block. For example, line 13 of the try block checks a divisor. If its
value is zero, an exception of type div_BY_zero is issued by the throw operator in the “:”
clause of the conditional assignment statement. The exception thrown on line 13 is processed in
the catch block at line 15, which delivers the appropriate message (see Figure 1).

 When first introduced to the intrinsic structured exception handling of C++, many
programmers hope they can use the try and catch features to handle errors encountered by the
hardware or operating system. The hope is that the operating system and C++ runtime library
will throw special types of exceptions in response to hardware and operating system exceptions
encountered inside try blocks and that these special exceptions can be handled in special types
of catch blocks. However, this capability is beyond standard C++ exception handling features.

 C++ exception handling can only be used by C++ code. For example, exceptions cannot be
thrown by C routines called from the same try block. Additionally, the capability to throw
exceptions does not pass through non-C++ routines to downstream C++ routines. For example, if
a C routine is called from within a try block and subsequently calls a C++ routine, the called
C++ routine cannot throw exceptions.

General description

 The disclosed method extends the functionality of C++ exception handling to include limited
capabilities to handle six types of exceptions that are signaled by hardware and the operating
system. The six exceptions are defined by the ANSI C++ programming language as the
following signals:

• SIGABRT - Abort
• SIGFPE - Hardware detected arithmetic exceptions
• SIGILL - Hardware detected illegal instruction exceptions
• SIGINT - Interactive attention signal
• SIGSEGV - Hardware detected exceptions caused by invalid memory accesses
• SIGTERM - Signals delivered by the operating system to terminate executing programs

Advantages

 The disclosed method provides advantages, including:
• Improved functionality due to providing extended C++ exception features to handle six OS
signal exceptions
• Improved reliability due to increasing the types of errors detected and processed
• Improved portability due to being implemented in ANSI C++ and using similar semantics

Detailed description

 The disclosed method includes extended C++ exception features to handle OS signal
exceptions.

 SIGABRT signals are delivered in response to calls to the abort() C++ runtime system
service. This system service is used to deliberately and immediately terminate a program.

 SIGFPE signals are delivered in response to hardware detected arithmetic exceptions.
SIGILL signals are delivered in response to hardware detected illegal instruction exceptions.
These exceptions may also be caused by attempts to use privileged instructions from non-
privileged modes.

 SIGINT signals are delivered in response to an interactive attention signal. It is typically
created by holding the Ctrl key down while pressing the C key.

 SIGSEGV signals are delivered in response to hardware detected exceptions caused by
invalid memory accesses.

 SIGTERM signals are delivered by the operating system to terminate executing programs.

 Any of the six ANSI signals can be delivered by the C/C++ run-time library raise routine
or by other hardware or software events regardless of the computer language a routine is written
in. If any one of the six ANSI signals is delivered inside the scope of a __Try block, the signal
is caught by the corresponding __Catch block, regardless of the languages used or the method
of signal delivery.

 The __Try/__Catch mechanism is semantically similar to the intrinsic C++ exception
handling. When an exception condition is realized and the exception is thrown, no method
enables the program to return to the site of the error and fix it. Both the conventional and
disclosed mechanisms are designed to report exceptions, not to correct and retry them.

Sample implementation

 A sample implementation illustrates the disclosed method (see Figure 2).

 On line 11, the __Try operator establishes mechanisms to receive the six ANSI-specified
signals described above and to throw them as C++ executions of type signal_exeception.
On line 13 of the __Try block, a floating point division operation is performed. If the divisor is
zero, and floating point exception hardware is enabled, a SIGFPE signal is raised. Mechanisms
of the __Try operator on line 11 receive the SIGFPE signal and throw a C++ exception of type
signal_execption. The exception thrown on line 11 is caught in the __Catch block at line
16, and an appropriate message is produced.

 The exception condition is unknown until hardware discovers it in the __Try block. In
response to this discovery, a signal is raised and delivered as a signal_exception type
exception using a throw operator inside the __Try block. The exception thrown in the __Try
block is handled in the __Catch block.

 The __Try, __EndTry, __Catch, and __EndCatch operators are implemented as C++
preprocessor macros (see Figure 3).

 Lines 1 through 10 are exactly as in Figure 2. Lines 11 through 11.10 extend the __Try
macro. Lines 12 through 14 are unchanged. Lines 15 and 15.0 extend the __EndTry macro.
Lines 16 and 16.0 extend the __Catch macro. Lines 17 through 19 are unchanged. Lines 20
through 20.4 extend the __EndCatch macro.

 The opening brace (‘{‘) character on line 11.0 is closed by the closing brace character (‘}’)
found at the end of line 20.4. They define a single scope of reference that includes the __Try
and __EndCatch operators. The following variables defined at lines 11.1 through 11.4 are local
to that scope:
• new_try_jmp_context
• old_try_jmp_context
• new_try_sigaction
• old_try_sigaction

 The C++ try block extends from the line opening brace character (‘{‘) on line 11.6 to line
the closing brace character (‘}’) on line 15.0. The C++ catch block of type
signal_exception extends from the opening brace character (‘{‘) on line 16.0 to the first
closing brace character (‘}’) on line 20.0.

 The variable new_try_jmp_context (defined at line 11.1) is a pointer set to the
setjmp/longjmp context buffer for use by the current __Try block. The variable
old_try_jmp_context (defined at line 11.2) saves a pointer to the currently active context
buffer. A global context block pointer is shared by all __Try blocks, so it must be saved by
each __Try macro and restored by each __EndCatch macro.

 The variable new_try_sigaction (defined at line 11.3) is pointer set to a global table of
function pointers. Each entry defines a handler for a signal number that corresponds to the table
entry. The variable old_try_sigaction (defined at line 11.4) saves and restores the old signal
handler function pointers. The SetSignalHandlers function (called at line 11.5) saves
function pointers to the old signal handlers (stored in old_try_sigaction)and establishes the
functions addressed in new_try_sigaction as the new signal handlers.

 The C++ try block is entered at line 11.6. At line 11.7, the global jmp_buf pointer
(try_jmp_context)is set to point at new_try_jmp_context. At line 11.8, setjmp
initializes the global jmp_buf variable (try_jmp_context)for use by a longjmp context
buffer from one of the new signal handlers. The setjmp routine sets the status variable to
zero.

 Because the status variable is zero, control passes into the code block opened by the opening
brace character (‘{‘) at line 12. The divide operation at line 13 is executed. If it succeeds without
error, control passes to line 20.1 just after the closing brace character (‘}’) that terminates the
catch block opened at line 16.0. Otherwise, a SIGFPE signal is delivered and processed by the
signal handler established earlier in the SetSignalHandlers routine (at line 11.5). The signal
handler issues a longjmp, using try_jm_context and SIGFPE as arguments. The longjmp
context buffer returns control to line 11.8, setting the status variable to SIGFPE.

 Control passes through line 11.9 to line 11.10, where the throw operator delivers a C++
exception of type signal_exception. Control passes to the catch operator block at line 16.0.
At line 18, a message is printed that displays the numerical value of the SIGFPE signal number.

 Regardless of whether an exception is thrown or not, ResetSignalHandlers (at line 20.1)
executes and restores the original signal handlers. The global jmp_buf pointer is restored from
the old_try_jmp_context variable (at line 20.2). The new_try_jmp_context variable is
deleted at line 20.4. Control leaves the code block opened at lines 11.0 at line 20.4.

 Implementations of the SetSignalHandlers (at line 11.5), the ResetSignalHandlers
(at line 20.1), and the SignalHandler appear below.

 The SetSignalHandlers routine saves the old handler and installs a new handler for each
of the six ANSI signals (see Figure 4).

 At lines 5 through 8, the C++ run-time library routine signal obtains its arguments, which
are corresponding signal numbers from the global table of signal numbers (try_signals) and
new handlers from the global table of signal handlers (new_sigaction). The routine returns
corresponding old signal handlers to the old_sigaction handlers table.

 The ResetSignalHandlers routine is similar to the SetSignalHandlers routine (see
Figure 5).

 The ResetSignalHandlers routine restores the signal handlers that were installed when
the __Try block was entered. Lines 4 through 7 invoke the C++ signal run-time library

routine. Its arguments are corresponding signal numbers from the global table of signal numbers
(try_signals) and old signal handlers from the table of signal handlers (old_sigaction).
Unlike the SetSignalHandler routine, ResetSignalHandler ignores the value returned by
signal.

 The SignalHandler routine handles the six ANSI signals (see Figure 6).

 All six signals are handled the same way. The switch statement at line 3 accepts any signal
that arrives. If the arriving signal is one of the six ANSI signals, control passes to line 11, where
the longjmp operation transfers processing to the statement in the most recent __Try block
where the setjmp was issued (line 11.8 in Figure 3). The longjmp operation uses the global
jmp_buf structure as its first argument and the signal_type value as its second argument.
The longjmp operation sets the status variable (in line 11.8 of Figure 3) to the value of
signal_type. Control passes to line 11.9 of Figure 3.

1 double i,j,k;
2 class div_BY_zero
3 {
4 public:
5 double divisor;
6 double dividend;
7 div_BY_zero(double i, double j) { dividend = i; divisor = j; };
8 virtual ~divide_by_zero() {};
9 };
10 ...
11 try
12 {
13 k = (j != 0.0)? i/j : throw divide_by_zero(i,j);
14 }
15 catch(div_BY_zero exception)
16 {
17 printf(“Divide by zero exception: dividend = %d : divisor = %d \n”,
18 exception.dividend,
19 exception.divisor);
20 };

Fig. 1

1 double i,j,k;
2 class signal_exception
3 {
4 public:
5 int type;
7 signal_exception(int i) { type = i; };
8 virtual ~signal_exception() {};
9 };
10 ...
11 __Try
12 {
13 k = i/j;
14 }
15 _EndTry
16 __Catch(signal)
17 {
18 printf(“An exception of type %d was signaled.\n”, signal.type);
19 };
20 __EndCatch;

Fig. 2

1 double i,j,k;
2 class signal_exception
3 {
4 public:
5 int type;
7 signal_exception(int i) { type = i; };
8 virtual ~signal_exception() {};
9 };
10 ...
11 //__Try
11.0 {
11.1 jmp_buf *new_try_jmp_context = new jmp_buf[sizeof(jmp_buf)];
11.2 jmp_buf *old_try_jmp_context = try_jmp_context;
11.3 sigaction_fp *new_try_sigaction = try_sigactions;
11.4 sigaction_fp old_try_sigaction[TRY_NSIG];
11.5 SetSignalHandlers(new_try_sigaction, old_try_sigaction);
11.6 try {
11.7 try_jmp_context = new_try_jmp_context;
11.8 int status = setjmp(try_jmp_context);
11.9 if (status)
11.10 throw signal_exception(status);
12 {
13 k = i/j;
14 }
15 //_EndTry
15.0 }
16 //__Catch(signal)
16.0 catch(signal_exception signal) {
17 {
18 printf(“An exception of type %d was signaled.\n”, signal.type);
19 };
20 //__EndCatch;
20.0 }
20.1 ResetSignalHandlers(old_try_sigaction);
20.2 try_jmp_context = old_try_jmp_context;
20.3 delete [] new_try_jmp_context;
}

Fig. 3

1 void SetSignalHandlers(sigaction_fp *new_sigaction,
2 sigaction_fp *old_sigaction)
3 {
4 int i;
5 for (i = 0; i < TRY_NSIG; i++)
6 {
7 old_sigaction[i] = signal(try_signals[i],new_sigaction[i]);
8 }
9 return;
10 }

Fig. 4

1 void ResetSignalHandlers(sigaction_fp *old_sigaction)
2 {
3 int i;
4 for (i = 0; i < TRY_NSIG; i++)
5 {
6 signal(try_signals[i],old_sigaction[i]);
7 }
8 return;
9 }

Fig. 5

1 void SignalHandler(int signal_type)
2 {
3 switch(signal_type)
4 {
5 case SIGILL:
6 case SIGSEGV:
7 case SIGTERM:
8 case SIGABRT:
9 case SIGFPE:
10 case SIGINT:
11 longjmp(try_block_context, signal_type);
12 break;
13 }
14 return;
15 }

Fig. 6

Disclosed anonymously

