
 36

Chapter 3: Statements and Control Flow

Statements are the ``steps'' of a program. Most statements compute and assign values or

call functions, but we will eventually meet several other kinds of statements as well. By

default, statements are executed in sequence, one after another. We can, however, modify

that sequence by using control flow constructs which arrange that a statement or group of

statements is executed only if some condition is true or false, or executed over and over

again to form a loop. (A somewhat different kind of control flow happens when we call a

function: execution of the caller is suspended while the called function proceeds. We'll

discuss functions in chapter 5.)

My definitions of the terms statement and control flow are somewhat circular. A

statement is an element within a program which you can apply control flow to; control

flow is how you specify the order in which the statements in your program are executed.

(A weaker definition of a statement might be ``a part of your program that does

something,'' but this definition could as easily be applied to expressions or functions.)

3.1 Expression Statements

[This section corresponds to K&R Sec. 3.1]

Most of the statements in a C program are expression statements. An expression

statement is simply an expression followed by a semicolon. The lines

 i = 0;

 i = i + 1;

and

 printf("Hello, world!\n");

are all expression statements. (In some languages, such as Pascal, the semicolon separates

statements, such that the last statement is not followed by a semicolon. In C, however, the

semicolon is a statement terminator; all simple statements are followed by semicolons.

The semicolon is also used for a few other things in C; we've already seen that it

terminates declarations, too.)

Expression statements do all of the real work in a C program. Whenever you need to

compute new values for variables, you'll typically use expression statements (and they'll

typically contain assignment operators). Whenever you want your program to do

something visible, in the real world, you'll typically call a function (as part of an

expression statement). We've already seen the most basic example: calling the function

printf to print text to the screen. But anything else you might do--read or write a disk

file, talk to a modem or printer, draw pictures on the screen--will also involve function

calls. (Furthermore, the functions you call to do these things are usually different

depending on which operating system you're using. The C language does not define them,

so we won't be talking about or using them much.)

Administrator
Highlight

Administrator
Highlight

 37

Expressions and expression statements can be arbitrarily complicated. They don't have to

consist of exactly one simple function call, or of one simple assignment to a variable. For

one thing, many functions return values, and the values they return can then be used by

other parts of the expression. For example, C provides a sqrt (square root) function,

which we might use to compute the hypotenuse of a right triangle like this:

 c = sqrt(a*a + b*b);

To be useful, an expression statement must do something; it must have some lasting

effect on the state of the program. (Formally, a useful statement must have at least one

side effect.) The first two sample expression statements in this section (above) assign new

values to the variable i, and the third one calls printf to print something out, and these

are good examples of statements that do something useful.

(To make the distinction clear, we may note that degenerate constructions such as

 0;

 i;

or

 i + 1;

are syntactically valid statements--they consist of an expression followed by a semicolon-

-but in each case, they compute a value without doing anything with it, so the computed

value is discarded, and the statement is useless. But if the ``degenerate'' statements in this

paragraph don't make much sense to you, don't worry; it's because they, frankly, don't

make much sense.)

It's also possible for a single expression to have multiple side effects, but it's easy for

such an expression to be (a) confusing or (b) undefined. For now, we'll only be looking at

expressions (and, therefore, statements) which do one well-defined thing at a time.

3.2 if Statements

[This section corresponds to K&R Sec. 3.2]

The simplest way to modify the control flow of a program is with an if statement, which

in its simplest form looks like this:

 if(x > max)

 max = x;

Even if you didn't know any C, it would probably be pretty obvious that what happens

here is that if x is greater than max, x gets assigned to max. (We'd use code like this to

keep track of the maximum value of x we'd seen--for each new x, we'd compare it to the

old maximum value max, and if the new value was greater, we'd update max.)

More generally, we can say that the syntax of an if statement is:

 if(expression)

 statement

 38

where expression is any expression and statement is any statement.

What if you have a series of statements, all of which should be executed together or not at

all depending on whether some condition is true? The answer is that you enclose them in

braces:

 if(expression)

 {

 statement₁

 statement₂

 statement₃

 }

As a general rule, anywhere the syntax of C calls for a statement, you may write a series

of statements enclosed by braces. (You do not need to, and should not, put a semicolon

after the closing brace, because the series of statements enclosed by braces is not itself a

simple expression statement.)

An if statement may also optionally contain a second statement, the ``else clause,''

which is to be executed if the condition is not met. Here is an example:

 if(n > 0)

 average = sum / n;

 else {

 printf("can't compute average\n");

 average = 0;

 }

The first statement or block of statements is executed if the condition is true, and the

second statement or block of statements (following the keyword else) is executed if the

condition is not true. In this example, we can compute a meaningful average only if n is

greater than 0; otherwise, we print a message saying that we cannot compute the average.

The general syntax of an if statement is therefore
 if(expression)

 statement₁

 else

 statement₂

(where both statement₁ and statement₂ may be lists of

statements enclosed in braces).

It's also possible to nest one if statement inside another. (For that matter, it's in general

possible to nest any kind of statement or control flow construct within another.) For

example, here is a little piece of code which decides roughly which quadrant of the

compass you're walking into, based on an x value which is positive if you're walking east,

and a y value which is positive if you're walking north:

 if(x > 0)

 {

 if(y > 0)

 printf("Northeast.\n");

 else printf("Southeast.\n");

 }

 39

 else {

 if(y > 0)

 printf("Northwest.\n");

 else printf("Southwest.\n");

 }

When you have one if statement (or loop) nested inside another, it's a very good idea to

use explicit braces {}, as shown, to make it clear (both to you and to the compiler) how

they're nested and which else goes with which if. It's also a good idea to indent the

various levels, also as shown, to make the code more readable to humans. Why do both?

You use indentation to make the code visually more readable to yourself and other

humans, but the compiler doesn't pay attention to the indentation (since all whitespace is

essentially equivalent and is essentially ignored). Therefore, you also have to make sure

that the punctuation is right.

Here is an example of another common arrangement of if and else. Suppose we have a

variable grade containing a student's numeric grade, and we want to print out the

corresponding letter grade. Here is code that would do the job:

 if(grade >= 90)

 printf("A");

 else if(grade >= 80)

 printf("B");

 else if(grade >= 70)

 printf("C");

 else if(grade >= 60)

 printf("D");

 else printf("F");

What happens here is that exactly one of the five printf calls is executed, depending on

which of the conditions is true. Each condition is tested in turn, and if one is true, the

corresponding statement is executed, and the rest are skipped. If none of the conditions is

true, we fall through to the last one, printing ``F''.

In the cascaded if/else/if/else/... chain, each else clause is another if statement. This

may be more obvious at first if we reformat the example, including every set of braces

and indenting each if statement relative to the previous one:

 if(grade >= 90)

 {

 printf("A");

 }

 else {

 if(grade >= 80)

 {

 printf("B");

 }

 else {

 if(grade >= 70)

 {

 printf("C");

 }

 else {

 if(grade >= 60)

 40

 {

 printf("D");

 }

 else {

 printf("F");

 }

 }

 }

 }

By examining the code this way, it should be obvious that exactly one of the printf calls

is executed, and that whenever one of the conditions is found true, the remaining

conditions do not need to be checked and none of the later statements within the chain

will be executed. But once you've convinced yourself of this and learned to recognize the

idiom, it's generally preferable to arrange the statements as in the first example, without

trying to indent each successive if statement one tabstop further out. (Obviously, you'd

run into the right margin very quickly if the chain had just a few more cases!)

3.3 Boolean Expressions

An if statement like

 if(x > max)

 max = x;

is perhaps deceptively simple. Conceptually, we say that it checks whether the condition

x > max is ``true'' or ``false''. The mechanics underlying C's conception of ``true'' and

``false,'' however, deserve some explanation. We need to understand how true and false

values are represented, and how they are interpreted by statements like if.

As far as C is concerned, a true/false condition can be represented as an integer. (An

integer can represent many values; here we care about only two values: ``true'' and

``false.'' The study of mathematics involving only two values is called Boolean algebra,

after George Boole, a mathematician who refined this study.) In C, ``false'' is represented

by a value of 0 (zero), and ``true'' is represented by any value that is nonzero. Since there

are many nonzero values (at least 65,534, for values of type int), when we have to pick a

specific value for ``true,'' we'll pick 1.

The relational operators such as <, <=, >, and >= are in fact operators, just like +, -, *,

and /. The relational operators take two values, look at them, and ``return'' a value of 1 or

0 depending on whether the tested relation was true or false. The complete set of

relational operators in C is:

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

 == equal

 != not equal

Administrator
Highlight

 41

For example, 1 < 2 is 1, 3 > 4 is 0, 5 == 5 is 1, and 6 != 6 is 0.

We've now encountered perhaps the most easy-to-stumble-on ``gotcha!'' in C: the

equality-testing operator is ==, not a single =, which is assignment. If you accidentally

write

 if(a = 0)

(and you probably will at some point; everybody makes this mistake), it will not test

whether a is zero, as you probably intended. Instead, it will assign 0 to a, and then

perform the ``true'' branch of the if statement if a is nonzero. But a will have just been

assigned the value 0, so the ``true'' branch will never be taken! (This could drive you

crazy while debugging--you wanted to do something if a was 0, and after the test, a is 0,

whether it was supposed to be or not, but the ``true'' branch is nevertheless not taken.)

The relational operators work with arbitrary numbers and generate true/false values. You

can also combine true/false values by using the Boolean operators, which take true/false

values as operands and compute new true/false values. The three Boolean operators are:

 && and

 || or

 ! not (takes one operand; ``unary'')

The && (``and'') operator takes two true/false values and produces a true (1) result if both

operands are true (that is, if the left-hand side is true and the right-hand side is true). The

|| (``or'') operator takes two true/false values and produces a true (1) result if either

operand is true. The ! (``not'') operator takes a single true/false value and negates it,

turning false to true and true to false (0 to 1 and nonzero to 0).

For example, to test whether the variable i lies between 1 and 10, you might use

 if(1 < i && i < 10)

 ...

Here we're expressing the relation ``i is between 1 and 10'' as ``1 is less than i and i is

less than 10.''

It's important to understand why the more obvious expression

 if(1 < i < 10) /* WRONG */

would not work. The expression 1 < i < 10 is parsed by the compiler analogously to 1

+ i + 10. The expression 1 + i + 10 is parsed as (1 + i) + 10 and means ``add 1 to

i, and then add the result to 10.'' Similarly, the expression 1 < i < 10 is parsed as (1 <

i) < 10 and means ``see if 1 is less than i, and then see if the result is less than 10.'' But

in this case, ``the result'' is 1 or 0, depending on whether i is greater than 1. Since both 0

Administrator
Highlight

 42

and 1 are less than 10, the expression 1 < i < 10 would always be true in C, regardless

of the value of i!

Relational and Boolean expressions are usually used in contexts such as an if statement,

where something is to be done or not done depending on some condition. In these cases

what's actually checked is whether the expression representing the condition has a zero or

nonzero value. As long as the expression is a relational or Boolean expression, the

interpretation is just what we want. For example, when we wrote

 if(x > max)

the > operator produced a 1 if x was greater than max, and a 0 otherwise. The if

statement interprets 0 as false and 1 (or any nonzero value) as true.

But what if the expression is not a relational or Boolean expression? As far as C is

concerned, the controlling expression (of conditional statements like if) can in fact be

any expression: it doesn't have to ``look like'' a Boolean expression; it doesn't have to

contain relational or logical operators. All C looks at (when it's evaluating an if

statement, or anywhere else where it needs a true/false value) is whether the expression

evaluates to 0 or nonzero. For example, if you have a variable x, and you want to do

something if x is nonzero, it's possible to write

 if(x)

 statement

and the statement will be executed if x is nonzero (since nonzero means ``true'').

This possibility (that the controlling expression of an if statement doesn't have to ``look

like'' a Boolean expression) is both useful and potentially confusing. It's useful when you

have a variable or a function that is ``conceptually Boolean,'' that is, one that you

consider to hold a true or false (actually nonzero or zero) value. For example, if you have

a variable verbose which contains a nonzero value when your program should run in

verbose mode and zero when it should be quiet, you can write things like

 if(verbose)

 printf("Starting first pass\n");

and this code is both legal and readable, besides which it does what you want. The

standard library contains a function isupper() which tests whether a character is an

upper-case letter, so if c is a character, you might write
 if(isupper(c))

 ...

Both of these examples (verbose and isupper()) are useful and readable.

However, you will eventually come across code like

 if(n)

 average = sum / n;

where n is just a number. Here, the programmer wants to compute the average only if n is

nonzero (otherwise, of course, the code would divide by 0), and the code works, because,

Administrator
Highlight

 43

in the context of the if statement, the trivial expression n is (as always) interpreted as

``true'' if it is nonzero, and ``false'' if it is zero.

``Coding shortcuts'' like these can seem cryptic, but they're also quite common, so you'll

need to be able to recognize them even if you don't choose to write them in your own

code. Whenever you see code like

 if(x)

or
 if(f())

where x or f() do not have obvious ``Boolean'' names, you can read them as ``if x is

nonzero'' or ``if f() returns nonzero.''

3.4 while Loops

[This section corresponds to half of K&R Sec. 3.5]

Loops generally consist of two parts: one or more control expressions which (not

surprisingly) control the execution of the loop, and the body, which is the statement or set

of statements which is executed over and over.

The most basic loop in C is the while loop. A while loop has one control expression,

and executes as long as that expression is true. This example repeatedly doubles the

number 2 (2, 4, 8, 16, ...) and prints the resulting numbers as long as they are less than

1000:

 int x = 2;

 while(x < 1000)

 {

 printf("%d\n", x);

 x = x * 2;

 }

(Once again, we've used braces {} to enclose the group of statements which are to be

executed together as the body of the loop.)

The general syntax of a while loop is

 while(expression)

 statement

A while loop starts out like an if statement: if the condition expressed by the expression

is true, the statement is executed. However, after executing the statement, the condition is

tested again, and if it's still true, the statement is executed again. (Presumably, the

condition depends on some value which is changed in the body of the loop.) As long as

the condition remains true, the body of the loop is executed over and over again. (If the

condition is false right at the start, the body of the loop is not executed at all.)

Administrator
Highlight

Administrator
Highlight

 44

As another example, if you wanted to print a number of blank lines, with the variable n

holding the number of blank lines to be printed, you might use code like this:

 while(n > 0)

 {

 printf("\n");

 n = n - 1;

 }

After the loop finishes (when control ``falls out'' of it, due to the condition being false), n

will have the value 0.

You use a while loop when you have a statement or group of statements which may have

to be executed a number of times to complete their task. The controlling expression

represents the condition ``the loop is not done'' or ``there's more work to do.'' As long as

the expression is true, the body of the loop is executed; presumably, it makes at least

some progress at its task. When the expression becomes false, the task is done, and the

rest of the program (beyond the loop) can proceed. When we think about a loop in this

way, we can seen an additional important property: if the expression evaluates to ``false''

before the very first trip through the loop, we make zero trips through the loop. In other

words, if the task is already done (if there's no work to do) the body of the loop is not

executed at all. (It's always a good idea to think about the ``boundary conditions'' in a

piece of code, and to make sure that the code will work correctly when there is no work

to do, or when there is a trivial task to do, such as sorting an array of one number.

Experience has shown that bugs at boundary conditions are quite common.)

3.5 for Loops

[This section corresponds to the other half of K&R Sec. 3.5]

Our second loop, which we've seen at least one example of already, is the for loop. The

first one we saw was:

 for (i = 0; i < 10; i = i + 1)

 printf("i is %d\n", i);

More generally, the syntax of a for loop is
 for(expr₁ ; expr₂ ; expr₃)

 statement

(Here we see that the for loop has three control expressions. As always, the statement

can be a brace-enclosed block.)

Many loops are set up to cause some variable to step through a range of values, or, more

generally, to set up an initial condition and then modify some value to perform each

succeeding loop as long as some condition is true. The three expressions in a for loop

encapsulate these conditions: expr₁ sets up the initial condition,

expr₂ tests whether another trip through the loop should be taken, and

expr₃ increments or updates things after each trip through the loop and

prior to the next one. In our first example, we had i = 0 as expr₁, i < 10

Administrator
Highlight

 45

as expr₂, i = i + 1 as expr₃, and the call to printf as

statement, the body of the loop. So the loop began by setting i to 0, proceeded as long as

i was less than 10, printed out i's value during each trip through the loop, and added 1 to

i between each trip through the loop.

When the compiler sees a for loop, first, expr₁ is evaluated. Then,

expr₂ is evaluated, and if it is true, the body of the loop (statement) is

executed. Then, expr₃ is evaluated to go to the next step, and

expr₂ is evaluated again, to see if there is a next step. During the execution

of a for loop, the sequence is:

expr₁

expr₂

statement

expr₃

expr₂

statement

expr₃

...

expr₂

statement

expr₃

expr₂

The first thing executed is expr₁. expr₃ is evaluated after

every trip through the loop. The last thing executed is always expr₂,

because when expr₂ evaluates false, the loop exits.

All three expressions of a for loop are optional. If you leave out expr₁,

there simply is no initialization step, and the variable(s) used with the loop had better

have been initialized already. If you leave out expr₂, there is no test, and

the default for the for loop is that another trip through the loop should be taken (such

that unless you break out of it some other way, the loop runs forever). If you leave out

expr₃, there is no increment step.

The semicolons separate the three controlling expressions of a for loop. (These

semicolons, by the way, have nothing to do with statement terminators.) If you leave out

one or more of the expressions, the semicolons remain. Therefore, one way of writing a

deliberately infinite loop in C is

 for(;;)

 ...

It's useful to compare C's for loop to the equivalent loops in other computer languages

you might know. The C loop

 for(i = x; i <= y; i = i + z)

is roughly equivalent to:
 for I = X to Y step Z (BASIC)

Administrator
Highlight

 46

 do 10 i=x,y,z (FORTRAN)

 for i := x to y (Pascal)

In C (unlike FORTRAN), if the test condition is false before the first trip through the

loop, the loop won't be traversed at all. In C (unlike Pascal), a loop control variable (in

this case, i) is guaranteed to retain its final value after the loop completes, and it is also

legal to modify the control variable within the loop, if you really want to. (When the loop

terminates due to the test condition turning false, the value of the control variable after

the loop will be the first value for which the condition failed, not the last value for which

it succeeded.)

It's also worth noting that a for loop can be used in more general ways than the simple,

iterative examples we've seen so far. The ``control variable'' of a for loop does not have

to be an integer, and it does not have to be incremented by an additive increment. It could

be ``incremented'' by a multiplicative factor (1, 2, 4, 8, ...) if that was what you needed, or

it could be a floating-point variable, or it could be another type of variable which we

haven't met yet which would step, not over numeric values, but over the elements of an

array or other data structure. Strictly speaking, a for loop doesn't have to have a ``control

variable'' at all; the three expressions can be anything, although the loop will make the

most sense if they are related and together form the expected initialize, test, increment

sequence.

The powers-of-two example of the previous section does fit this pattern, so we could

rewrite it like this:

 int x;

 for(x = 2; x < 1000; x = x * 2)

 printf("%d\n", x);

There is no earth-shaking or fundamental difference between the while and for loops. In

fact, given the general for loop

 for(expr₁; expr₂; expr₃)

 statement

you could usually rewrite it as a while loop, moving the initialize and increment

expressions to statements before and within the loop:
 expr₁ ;

 while(expr₂)

 {

 statement

 expr₃ ;

 }

Similarly, given the general while loop
 while(expr)

 statement

you could rewrite it as a for loop:
 for(; expr;)

 statement

 47

Another contrast between the for and while loops is that although the test expression

(expr₂) is optional in a for loop, it is required in a while loop. If you leave

out the controlling expression of a while loop, the compiler will complain about a syntax

error. (To write a deliberately infinite while loop, you have to supply an expression

which is always nonzero. The most obvious one would simply be while(1) .)

If it's possible to rewrite a for loop as a while loop and vice versa, why do they both

exist? Which one should you choose? In general, when you choose a for loop, its three

expressions should all manipulate the same variable or data structure, using the initialize,

test, increment pattern. If they don't manipulate the same variable or don't follow that

pattern, wedging them into a for loop buys nothing and a while loop would probably be

clearer. (The reason that one loop or the other can be clearer is simply that, when you see

a for loop, you expect to see an idiomatic initialize/test/increment of a single variable,

and if the for loop you're looking at doesn't end up matching that pattern, you've been

momentarily misled.)

3.6 break and continue

[This section corresponds to K&R Sec. 3.7]

Sometimes, due to an exceptional condition, you need to jump out of a loop early, that is,

before the main controlling expression of the loop causes it to terminate normally. Other

times, in an elaborate loop, you may want to jump back to the top of the loop (to test the

controlling expression again, and perhaps begin a new trip through the loop) without

playing out all the steps of the current loop. The break and continue statements allow

you to do these two things. (They are, in fact, essentially restricted forms of goto.)

To put everything we've seen in this chapter together, as well as demonstrate the use of

the break statement, here is a program for printing prime numbers between 1 and 100:

#include <stdio.h>

#include <math.h>

main()

{

int i, j;

printf("%d\n", 2);

for(i = 3; i <= 100; i = i + 1)

 {

 for(j = 2; j < i; j = j + 1)

 {

 if(i % j == 0)

 break;

 if(j > sqrt(i))

 {

 printf("%d\n", i);

 break;

Administrator
Highlight

 48

 }

 }

 }

return 0;

}

The outer loop steps the variable i through the numbers from 3 to 100; the code tests to

see if each number has any divisors other than 1 and itself. The trial divisor j loops from

2 up to i. j is a divisor of i if the remainder of i divided by j is 0, so the code uses C's

``remainder'' or ``modulus'' operator % to make this test. (Remember that i % j gives the

remainder when i is divided by j.)

If the program finds a divisor, it uses break to break out of the inner loop, without

printing anything. But if it notices that j has risen higher than the square root of i,

without its having found any divisors, then i must not have any divisors, so i is prime,

and its value is printed. (Once we've determined that i is prime by noticing that j >

sqrt(i), there's no need to try the other trial divisors, so we use a second break

statement to break out of the loop in that case, too.)

The simple algorithm and implementation we used here (like many simple prime number

algorithms) does not work for 2, the only even prime number, so the program ``cheats''

and prints out 2 no matter what, before going on to test the numbers from 3 to 100.

Many improvements to this simple program are of course possible; you might experiment

with it. (Did you notice that the ``test'' expression of the inner loop for(j = 2; j < i;

j = j + 1) is in a sense unnecessary, because the loop always terminates early due to

one of the two break statements?)

