Printing Radio Frequency Identification (RFID) Tag Antennas Using Inks Containing Metal Nanoparticles

Bruce E. Kahn
Rochester Institute of Technology
bkahn@mail.rit.edu
http://www.rit.edu/~bekpph/

RIT

• Imaging and Photography
 – Largest (and best) Photography school
 – Imaging Science
• uE
 – First BS in uE
 – FAB
• Packaging

Printing

• School of Print Media
 – Printing Applications Lab
• Sloan Printing Industry Center
• Process Expertise
 – Offset lithography
 • Sheet-fed and web
 • Conventional and waterless plates
 – Flexography
 – Gravure

Project Goals

• Design and print test patterns and antennas for RFID applications
• Determine printing process capabilities for printing devices
• Study physical and electrical properties of printed features
• Fabricate a working device using printed antennas

Printable Electronics

• Use of traditional printing processes for production of circuits.
• Uses process-specific conductive inks to print circuits directly.

Printing Advantages

• Inexpensive (compared to FAB)
• High volume
• Prevalent equipment
• Wide variety of substrates available
• Additive process
Printing Methods

• Screen printing and inkjet are most commonly used for printing devices
 – Can use small amounts of (expensive!) materials
 – Economical for production of limited quantities

Screen and Ink-Jet Disadvantages

• Slow
• Limited volume.
• Resolution
 – Screen dependent
 – Ink Jet Satellites
• Screen printing lays down a relatively thick layer of ink

Our solution

• Use small scale (proofing) versions of printing techniques which can be used in large scale
 – Flexographic
 – Gravure
 – Lithographic

Flexographic Printing

Mark Andy Flexographic Press

Barcodes

Pros:
 • Inexpensive
 • Do not require specialty inks
 • Can be printed on almost any substrate

Cons:
 • Line of sight
 • Limited data capacity
Radio Frequency Identification

Pros:
• Large data capacity
• Can still be scanned even if visually obscured
• Allow inventory management and theft detection.

Cons:
• Expensive
• More complex to produce

RFID

• Antenna coil
• Si micro chip

How does RFID work

• Reader sends out RF signal
• Tag receives RF signal via antenna
• Two type of tags
 – Passive tags
 • RF signal is rectified and used to power chip
 – Active tags
 • Tag powered by battery
• Chip sends information back out antenna
• Reader receives information

Wal-mart!

• 100 largest suppliers to apply RFID to pallet (and case?) shipments by 2005
• All suppliers by end of 2006
Parmod ™ Inks

- Silver flakes
- Silver nanoparticles
- Silver “Metalo Organic Decomposition” (MOD) compound (soap)
 - Silver neodecanoate

US Patents
5,882,722; 6,036,889; 6,379,745

Microstructure

Cross section of printed line.
Top of printed line
Close-up of cross section

Cross section of printed sample on paper
Top of printed sample on paper
Characterization

- How do you judge print quality?
- How else do you drive quality improvement?
- Electrical characterization
 - Resistance
 - S_{11}
 - RLC

Coloring 101

- Don’t color outside the lines!
- Fill the areas you are trying to color completely
Antenna Properties

- **Coil resistance**
 - Currently:
 - 86 Ω / 4 coils
 - 75 Ω / 5 coils
- **Line height**
 - Average line height:
 - Mylar, 3-4 µm
 - Paper, 6-8 µm

Future Applications

- More complex circuits
- Thin film transistors
 - All printed RFID tag
 - Backplanes for displays
- Sensors
- Other multi-layered devices
- Micro Electro-Mechanical Systems (MEMS)
Team Members

Dr. Bruce E. Kahn
Professor
Imaging and Photographic Technology
Materials Science and Engineering

Rajiv Sangoi
Graduate Student
Materials Science and Engineering

Michael D. Seymour
Graduate Student
Electrical Engineering

Carl Smith
Undergraduate Student
Imaging and Photographic Technology

Dan Clark
Print and Image Quality Technologist, Printing Application Laboratory

Ken Chiu
Director
IT Collaboratory

Michael Kleper
Paul and Louise Miller Distinguished Professor
School of Print Media

Bill Garno
Director
Printing Application Laboratory

Dr. Jayanti Venkataraman
Professor
Electrical Engineering

Support

Questions