
OS-9 System Extension Modules
Boisy G. Pitre

The technical information, especially in the OS-9 Level Two manuals, is brimming with details and
information that can unlock a wealth of understanding about how OS-9 works. Unfortunately, some of this
information can be hard to digest without proper background and some help along the way. This series of
articles is intended to take a close look at the internals of OS-9/6809, both Level One and Level Two. So
along with this article, grab your OS-9 Technical Manual, sit down in a comfortable chair or recliner, grab
a beverage, relax and let’s delve into the deep waters!

Assemble Your Gear
For successful comprehension of the topics presented in this and future articles, I recommend that you have
the following items handy:

• OS-9 Level Two Technical Reference Manual OR
• OS-9 Level One Technical Information Manual (light blue book) and the OS-9 Addendum

Upgrade to Version 02.00.00 Manual
• A printout of the os9defs file for your respective operating system. This file can be found

in the DEFS directory of the OS-9 Level One Version 02.00.00 System Master (OS-9 Level
One) or the DEFS directory of the OS-9 Development System (OS-9 Level Two).

In this article, we will look at a rarely explored, yet intriguing OS-9 topic: system extensions, a.k.a. P2
modules. When performing an mdir command, you have no doubt seen modules with names like OS9p1
and OS9p2 in OS-9 Level Two (or OS9 and OS9p2 in OS-9 Level One). These modules are essentially
the OS-9 operating system itself; they contain the code for the system calls that are documented in the OS-9
Technical Reference documentation. In the case of OS-9 Level One, the modules OS9 and OS9p2 are
located in the boot track of your boot disk (track 34). In OS-9 Level Two, OS9p1 (equivalent to the OS9
module in Level One) is found in the boot track while OS9p2 is located in the bootfile. Both of the
modules are of module type Systm and define the basic behavior and structure of OS-9. Even the module
IOMan is a system extension, containing code for the I/O calls in the operating system.

While drivers and file managers have been the most common area to expand the capabilities of OS-9, they
are pretty much limited to expanding the functionality of I/O. What system extensions allow you to do is
even more powerful: they can add new system calls or even replace existing ones. Such functionality
allows you to change the behavior of OS-9 in a very fundamental way. Of course, with such power,
caution must be exercised. It is not wise to radically modify the behavior of an existing system call; such
an action could break compatibility with existing applications.

What we aim to do in this article is not to replace an existing system call, but rather to add a new system
call by looking at the example provided in Tandy’s OS-9 Level Two documentation. Although the
example is written for OS-9 Level Two, we will look at how it can be changed to run under OS-9 Level
One as well. But first, let's get a little background on system calls and how they are constructed in OS-9.

The System Call
As an operating system, OS-9 provides system level functions, or system calls to applications. These
system calls give applications a base by which they can operate consistently and without fear of
incompatibility from one OS-9 system to the next. The system call in OS-9/6809 evaluates to an SWI2
instruction on the 6809, which is a software interrupt. Suffice it to say that when this instruction is
encountered by the CPU, control is routed to OS-9, which interprets and performs the system call on behalf
of the calling process.

While system calls are generally hidden by wrapper functions or procedures in high-level languages such as
Basic09 and C, we can see the system call in its native form by looking at 6809 assembly language.
Consider the following assembly source fragment:

 lda #1

 leax mess,pcr
 ldy #5
 os9 I$Write

 rts
 mess fcc “Hello”

In the middle of what appears to be normal 6809 assembly language source code is a mnemonic called
os9. This is a pseudo mnemonic, since Motorola did not place an os9 instruction in the 6809 instruction
set. The OS-9 assembler actually recognizes this pseudo mnemonic as a special case, along with the
I$Write string, and translates the above piece of code into:

 lda #1
 leax mess,pcr

 ldy #5
 swi2
 fcb $8A

 rts
 mess fcc “Hello”

The $8A which follows the swi2 instruction is the constant representation of the I/O system call
I$Write. Since the swi2 instruction calls into the OS-9 kernel, the code in the kernel looks for the byte
following the swi2 instruction in the module (the $8A) and interprets that as the system call code. Using
that code, OS-9 jumps to the appropriate routine in order to execute the I$Write.

Since the system call code following the swi2 instruction is a byte, in theory this would allow OS-9 to
have up to 256 different system calls that can be executed on behalf of an application. Under OS-9 Level
Two, this is the case; however under OS-9 Level One there are restrictions placed on exactly which codes
are available. The following tables show the range of system call codes.

Table 1 – OS-9 Level One System Call Ranges

System call range Function
$00-$27 User mode system call codes
$29-$34 Privileged system mode call codes
$80-$8F I/O system call codes

Table 2 – OS-9 Level Two System Call Ranges

System call range Function
$00-$7F User mode system call codes
$80-$8F I/O system call codes
$90-$FF Privileged mode system call codes

The idea behind User mode vs. System mode is to allow two different points of execution for the same
system call, depending on whether the calling process is running in user state or system state. OS-9
controls this by maintaining two system call tables: one for user state and one for system state. When
installing a system call, as we’ll soon see, we can specify whether our system call should only be called
from system state (hence only updating the system table) or from both user and system state (updating both
the user and system tables).

An example of a system call that can be executed in both user and privileged modes is the F$Load
function code (pp. 8-25 in the OS-9 Level Two Technical Reference manual; pp. 106 in the OS-9 Level

One Technical Information manual). Since F$Load can be called from a user state process as well as from
a driver or other module running in system state, OS-9 installs this system call in both the user and system
tables. On the other hand, a privileged mode system call such as F$AProc (Level Two: pp. 8-74; Level
One: pp. 141) can only be called from system state and therefore a user state process attempting to call it
will receive an error.

Notice that in both OS-9 Level One and OS-9 Level Two, codes $80-$8F are reserved for I/O system call
codes. When the OS-9 kernel receives one of these codes, it passes the code along to IOMan for
processing. I/O system calls cannot be added since they are under the control of IOMan.

Installing a new system call involves selecting a free system call code, determining whether the call will be
accessible from both user/system state or from system state only, and building a table in assembly language
that will be used to install the system call. Interestingly enough, the method of installing a system call is by
calling a system call! It’s called F$SSvc and is documented in your respective OS-9 Technical manual.

Installing a System Call in OS-9 Level Two
The source code in Listing 1 is the system extension module, os9p3.a, which contains the code to install the
system call, as well as the system call code itself. Incidentally, this is virtually the same code that is found
in the OS-9 Level Two Technical Reference Manual on pp. 2-2 to 2-4. I’ve eliminated the comments for
brevity since they are already in your manual, as well as changed the use directive. Instead of including
/dd/defs/os9defs, I include /dd/defs/os9defs.l2. The reason for this is that I do compiling
of both OS-9 Level One and OS-9 Level Two modules on my CoCo 3 development system. Since the OS-
9 definitions are different for each operating system, I have renamed their respective os9defs files with
an extension indicating which operating system they belong to. Even if you just develop for one operating
system or the other, I strongly suggest following the same naming convention; it will save you headaches in
the long run.

This module, called OS9p3, installs the F$SAYHI system call. A process making this call can either pass
a pointer to a string of up to 40 bytes (carriage return terminated) in register X, or set X to 0, in which case
the system call will print a default message. In either case, the message goes to the calling process’
standard error path. While not very useful, this system call is a good example of how to write a system
extension.

The asm program is used to assemble this source code file. Notice that the entry point for the module is
the label Cold, where Y is set to the address of the service table, SvcTbl. Each entry in this table
contains three bytes. The first is the system call code that we have selected from a range that Microware
says is safe to use for new system calls, and the remaining two are the address of the first instruction of the
system call. The table, which can contain any number of entries, is terminated by byte $80. After setting Y
to the address of the service table, a system call to F$SSvc is made, which takes the table pointed to by Y
and installs the system calls.

The code for the F$SAYHI system call in listing 1 is for OS-9 Level Two only. It determines whether or
not a valid string pointer has been passed in register X. If indeed the caller has passed a valid pointer, then
control is routed to the label SayHi6 where Y is loaded with the maximum byte count and the process
descriptor of the calling process is used to obtain the system path number of the process’ standard error in
register A. The separation of user and system state paths is an important concept to understand; however,
we will discuss it in detail in another article. For now, let’s continue analyzing the code.

The I$WritLn system call then prints the string at register X to the caller’s standard error path. If on the
other hand, register X contains a zero, then room is made on the caller’s stack for the default message,
which is then copied into the caller’s address space using the F$Move system call. The moving of the
default message from the system address space to the caller’s address space is necessary due to the
separation of a process’ address space in OS-9 Level Two.

Once the module has been compiled, it should be included in your OS-9 Level Two bootfile. Reboot with
the new bootfile, and the OS9p2 module will find OS9p3 then jump into the execution offset (the Cold
label in this case). This will install the F$SAYHI system call and make it available for programs
immediately.

Installing a System Call in OS-9 Level One
Listing 2 is similar to the code in Listing 1, except that the code to move the default message from system
space to the caller’s address space has been removed. Also, the code to install the system call has changed,
and the module type is not of type Systm, but instead of type Prgrm. This is due to the lack of separation
of address space in Level One, which makes writing system extension modules much easier than in Level
Two.

The common address space between the system and all processes in OS-9 Level One also makes the
F$SSvc system call available from user state as well as from system state. Unlike OS-9 Level Two,
where the system extension module must be placed in the bootfile, installing a system extension in OS-9
Level One takes a different approach. Placing a module called OS9p3 in an OS-9 Level One bootfile will
NOT cause the system extension to be called because there are no provisions for that in the kernel. Instead,
system extensions are installed by creating a module of type Prog that contains both code to install the
system call and the system call itself. Installing the system call entails executing the module from the
command line.

Besides the sayhi.a source in listing 2, another example of the this is the Printerr command that
comes with OS-9 Level One. This is a program that actually installs a newer version of the F$PErr
system call. To install the new system call, you simply run Printerr from the command line. It then
installs the call and exits. There is an advantage to OS-9 Level One’s approach to installing system calls: it
can be done at run-time without making a new bootfile and rebooting the system. However, additional care
must be taken not to unlink the Printerr module from memory. Why? Because the code for the
replacement F$PErr call is in that module, and if the module is unlinked, the memory it occupied is made
available subsequent reallocation and at some point, a system crash will ensue.

Exercising Our New System Call
Listing 3 is a small assembly language program, tsayhi, which calls the F$SAYHI routine. It will work
fine under both OS-9 Level One and Level Two. If you fork the tsayhi program without any parameters,
then the F$SAYHI system call is called with register X set to $0000, which will cause the system call to
print the default message. Otherwise, you can pass a message on the command line as a parameter and up
to 40 of the message’s characters will be printed to the standard error path.

Summary
Extension modules give us an effective way of altering the behavior of OS-9 by allowing us to add a new
system call or modify the behavior of an existing one. Writing extension modules requires an extremely
good understanding of the internals of OS-9. The particulars of writing a system extension vary under OS-
9 Level One and Level Two primarily due to the differences between memory addressing.

Type set Systm+Objct
Revs set ReEnt+1
 mod OS9End, OS9Name,Type,Revs,Cold,256
OS9Name fcs "OS9p3"

 fcb 1 edition number

 ifp1
 use /dd/defs/os9defs.l2
 endc

level equ 2
 opt -c
 opt f

* routine cold
Cold leay SvcTbl,pcr
 os9 F$SSvc
 rts

F$SAYHI equ $25

SvcTbl equ *
 fcb F$SAYHI
 fdb SayHi-*-2
 fcb $80

SayHi ldx R$X,u
 bne SayHi6
 ldy D.Proc
 ldu P$SP,y
 leau -40,u
 lda D.SysTsk
 ldb P$TASK,y
 ldy #40
 leax Hello,pcr
 os9 F$Move
 leax 0,u
SayHi6 ldy #40
 ldu D.Proc
 lda P$PATH+2,u
 os9 I$WritLn
 rts

Hello fcc "Hello there user."
 fcb $0D

 emod

OS9End equ *

Listing 1 - Source for os9p3.a for OS-9 Level Two

 end

Type set Prgrm+Objct
Revs set ReEnt+1
 mod OS9End, OS9Name,Type,Revs,Cold,256
OS9Name fcs "SayHi"

 fcb 1 edition number

 ifp1
 use /dd/defs/os9defs.l1
 endc

level equ 1
 opt -c
 opt f

* routine cold
Cold equ *
* The following three instructions are important. They cause the link
* count of this module to increase by 1. This insures that the module
* stays in memory, even if forked from disk.
 leax OS9Name,pcr
 clra
 os9 F$Link

 leay SvcTbl,pcr
 os9 F$SSvc
 bcs Exit
 clrb
Exit os9 F$Exit

F$SAYHI equ $25

SvcTbl equ *
 fcb F$SAYHI
 fdb SayHi-*-2
 fcb $80

* Entry point to F$SAYHI system call
SayHi ldx R$X,u
 bne SayHi6
 leax Hello,pcr
SayHi6 ldy #40
 ldu D.Proc
 lda P$PATH+2,u
 os9 I$WritLn
 rts

Hello fcc "Hello there user."
 fcb $0D

 emod

Listing 2 - Source for sayhi.a for OS-9 Level One

OS9End equ *
 end

Type set Prgrm+Objct
Revs set ReEnt+1
 mod OS9End, OS9Name,Type,Revs,start,256
OS9Name fcs "TSayHi"

 fcb 1 edition number

 ifp1
 use /dd/defs/os9defs
 endc

level equ 2
 opt -c
 opt f

F$SAYHI equ $25

* routine cold
start equ *
 lda ,x
 cmpa #$0D
 bne SayHi
 ldx #$0000
SayHi os9 F$SAYHI
 bcs error
 clrb
error os9 F$Exit

 emod

OS9End equ *
 end

Listing 3 - Source for tsayhi.a

