
DriveWire Protocol
Version 3.0

Candidate Specification 3

Boisy G. Pitre
March 8, 2009

Introduction
The DriveWire Protocol Specification defines a set of communication messages
that allow the Tandy/Radio Shack Color Computer (CoCo) to utilize the storage
capacity of a modern personal computer (Server). This storage model gives the
CoCo the appearance that it is directly connected to a large storage device, when
in fact, connectivity is achieved using a serial cable connected from the Server to
the CoCo’s built-in “Serial I/O” port.

There are distinct advantages in utilizing DriveWire as a storage medium:

• Cost and space savings: no additional hardware is needed for a CoCo to
use mass storage; no floppy controller, hard drive controller or hard drives are
required.

• Remote operation: the serial cable that tethers the CoCo to the Server can
extend for some length, allowing the CoCo to be positioned a considerable
distance from the Server.

• Easy data management: virtual disks that reside on the Server can be
easily copied, emailed or archived for backup purposes.

The essence of communication between the CoCo and Server is a documented
set of uni- and bi-directional messages called transactions. Each transaction is
composed of one or more packets, which are passed between CoCo and Server
through a serial line connection. Using clever timing techniques on the CoCo,
baud rates of up to 115,200 are reliably achievable.

System Requirements
The Server shall be defined as a modern personal computer or hand-held device
with sufficient mass storage and an RS-232 serial port that can be reliably driven
at rates of up to 115,200 bits per second.

DriveWire 3 Protocol	 	 Document Revision A

1

The CoCo shall be defined as any model of Color Computer 2 or greater,
produced by Tandy/Radio Shack with at least 16K of RAM, as well as an
appropriate operating environment that provides mass storage services (such as
Disk BASIC or OS-9).

Physical Interface Requirements
The physical cable connecting the CoCo to the Server
is recommended to be no longer than 10 feet in
length. At a minimum, it shall carry the following four
wires:

• Ground
• Vcc
• RD (Read Data)
• WD (Write Data)

A 4 pin DIN connector shall be on one end of the cable which will mate to the
jack on the back of the CoCo marked “Serial I/O”. The other end of the cable
shall be either a DB-9 or DB-25 female connector which will mate to an
appropriate serial port on the Server.

The following table shows the connections between the CoCo 4 pin DIN
connector to either a 9-pin DB-9 serial connector or a 25-pin DB-25 serial
connector.

CoCo 4 pin DIN DB-9 OR DB-25
Pin 2 (RD) Pin 3 (TD) Pin 2 (TD)
Pin 3 (GND) Pin 5 (GND) Pin 7 (GND)
Pin 4 (TD) Pin 2 (RD) Pin 3 (RD)

Table 1 - CoCo to Server Cable Pinout

Communication Protocol
The communication protocol shall follow the RS-232 standard of 8-N-1 (1 start
bit, 8 data bits, and 1 stop bit). For the Color Computer 2, the supported clock
speed shall be .89MHz and the bit rate shall be 57,600 bits per second. For the
Tandy Color Computer 3, the supported clock speed shall be 1.78MHz and the bit
rate shall be 115,200 bits per second.

DriveWire 3 Protocol	 	 Document Revision A

2

Transactions
The transaction is the basis for exchanging information between CoCo and
Server. All transactions consist of one or more packets of information, and are
generally initiated from the CoCo.

Some transactions are uni-directional: from the CoCo to the Server. Other
transactions are bi-directional. In a bi-directional transaction, both the CoCo and
the Server shall send their respective responses within 250 milliseconds (1/4 of a
second) of receiving the last packet from its peer, or else each shall presume a
timeout condition and abort the transaction.

With few exceptions, all CoCo initiated packets have the following common
header:

Byte Value
0 Command Code

Table 2 – Common Transaction Header

The command code is a byte value that communicates to the Server the desired
command to be executed.

The Initialization Transaction
This is a uni-directional transaction, and is performed by the CoCo as a
notification to the Server when its driver software is initialized. The following
Initialization packet is sent to the Server:

Byte Value
0 OP_INIT ($49)

Table 3 - Initialization Packet

Upon receipt of the packet, the Server shall perform the following steps:

1. If not already done, open the disk images for all supported drives.

The Read Extended Transaction
This bi-directional transaction is initiated by the CoCo to request one 256 byte
sector of data from the Server. When the CoCo desires to request a sector, it will
send the following Read Extended Request packet:

Byte Value
0 OP_READEX ($D2)

DriveWire 3 Protocol	 	 Document Revision A

3

1 Drive number
2 Bits 23-16 of LSN
3 Bits 15-8 of LSN
4 Bits 7-0 of LSN

Table 4 - Read Request Packet

The drive number is a value between 0-255, and represents the disk image
where the desired sector is located. The LSN is the Logical Sector Number, and
is a 24 bit value.

Read Extended Packet
Upon receipt of the packet, the Server shall consult the appropriate disk image
for the provided LSN and read that 256 byte sector. If an error occurs and the
Server cannot read the specified sector, it shall return the Read Failure packet:

Byte Value
0-255 256 bytes of zeroed sector data

Table 5 – Read Failure Packet

If no error occurred on reading the sector from the Server file system, the Server
shall return the following packet:

Byte Value
0-255 256 bytes of valid sector data

Table 6 – Read Success Packet

Upon receipt of either the Read Success or the Read Failure packet, the CoCo
shall:

1. Compute the 16 bit checksum on the 256 bytes of sector data received
from the Server.

2. Send the computed checksum to the Server as follows:

Byte Value
0 Bits 15-8 of the checksum (computed by CoCo)
1 Bits 7-0 of the checksum (computed by CoCo)

DriveWire 3 Protocol	 	 Document Revision A

4

Table 7 – CoCo Checksum Packet

Upon receipt of the checksum packet, the Server shall take one of two actions:

Action 1 – No Error Condition
If the server acquired the requested sector without error, then it shall compute
the 16 bit checksum on the 256 bytes of sector data sent to the CoCo and
compare its calculated checksum against that of the CoCo.

If the compare yields a match occurs, then Server shall send the following packet
to the CoCo:

Byte Value
0 No error code (0)

Table 8 – Checksum Match Packet

If the compare does not yield a match, then Server shall send the following
packet to the CoCo:

Byte Value
0 Checksum mismatch (243)

Table 9 – Checksum Mismatch Packet

Once either of these packets is received by the CoCo, the Read transaction is
considered terminated.

Action 2 – Error Condition
If the Server was unable to acquire the requested sector due to an error, then
the Server shall return an appropriate read error code:

Byte Value
0 Read error code (1-242 or 244-255)

Table 10 – Read Error Packet

Once the Read Error packet is received by the CoCo, the Read transaction is
considered terminated.

See Appendix A for a list of supported error codes, and Appendix B for the
checksum algorithm used by the CoCo to generate the checksums.

DriveWire 3 Protocol	 	 Document Revision A

5

ReRead Extended Packet
In the event that the CoCo receives a Checksum Mismatch packet during the
Read Transaction, the CoCo MAY send the following packet to the Server:

Byte Value
0 OP_REREADEX ($F2)
1 Drive number
2 Bits 23-16 of LSN
3 Bits 15-8 of LSN
4 Bits 7-0 of LSN

Table 11 – ReRead Extended Request Packet

Upon receiving this packet, the Server will attempt a retransmission of the
requested sector.

At any time, the CoCo may suspend the re-reading of a sector if errors continue
to accumulate, and the server will return to monitoring for additional commands.

The Write Transaction
This bi-directional transaction allows the CoCo to send one 256 byte sector of
data to the Server in order for it to be written to a specific virtual drive.

Byte Value
0 OP_WRITE ($57)
1 Drive number
2 Bits 23-16 of LSN
3 Bits 15-8 of LSN
4 Bits 7-0 of LSN
5-260 256 bytes of sector data to write
261 Bits 15-8 of checksum (computed by CoCo)
262 Bits 7-0 of checksum (computed by CoCo)

Table 12 - Write Request Packet

The Server shall implement a timeout of 250 milliseconds (1/4 second), in the
event that the CoCo stops sending data. This allows the Server to recover from
the Write Transaction state and return to processing other packets.

DriveWire 3 Protocol	 	 Document Revision A

6

Once the Server receives this packet, it shall:

1. Compute the 16 bit checksum over the 256 byte sector it received

2. Compare the checksum that it computed against the checksum provided
by the CoCo

Once the checksums have been compared, the Server shall acknowledge the
transmission as follows:

Byte Value
0 0 (checksum OK)

Table 13 – Write Success Packet

The CoCo, upon receipt of the packet, will do one the following:

1. If the error code received is 0 ($00), the CoCo will assume the transfer of
the sector was a success and terminate the transmission.

2. If the error code received is 243 (E$CRC), the CoCo MAY send the
following packet:

Byte Value
0 OP_REWRITE ($77)
1 Drive number
2 Bits 23-16 of LSN
3 Bits 15-8 of LSN
4 Bits 7-0 of LSN
5-260 256 bytes of sector data to write
261 Bits 15-8 of checksum (computed by CoCo)
262 Bits 7-0 of checksum (computed by CoCo)

Table 14 - ReWrite Request Packet

And the Write Transaction will commence again.

GetStat/SetStat Transaction
This uni-directional transaction is for informational purposes only and may not be
supported in all client environments. Its inclusion into the protocol specification
is mainly for the benefit of DriveWire-enabled OS-9 drivers that execute on the
CoCo.

DriveWire 3 Protocol	 	 Document Revision A

7

In such a driver, all GetStats/SetStats are passed to the Server via the
OP_GETSTAT or OP_SETSTAT code, followed by a byte representing the GetStat/
SetStat code. The Server may wish to log this information, but does not act upon
the packet itself.

Byte Value
0 OP_GETSTAT ($47) or

OP_SETSTAT ($53)
1 Drive number
2 GetStat or SetStat code

Table 15 – GetStat/SetStat Packet

Termination Transaction
Upon termination of the DriveWire client on the CoCo, this uni-directional
transaction shall be sent to the Server:

Byte Value
0 OP_TERM ($54)

Table 16 – Termination Packet

Upon receipt of the packet, the Server should:

1. Close the disk file associated for all supported drives.

The Reset Transaction
When the CoCo’s reset button is pressed, the state of the serial port changes
such that byte $FE (OP_RESET1) or $FF (OP_RESET2) will be present on the
serial line. This condition is therefore considered a uni-directional transaction to
the Server to indicate a global reset:

Byte Value
0 OP_RESET1 ($FE) or

OP_RESET2 ($FF)

Table 17 - Reset Packet

Upon receipt of the packet, the Server shall:

1. Reset any statistical values related to read/write and sector transfer
throughput for ALL drives.

2. Flush all caches connected to the virtual drives.

DriveWire 3 Protocol	 	 Document Revision A

8

No-Op Transaction
This is a uni-directional transaction that can be ignored by the Server.

Byte Value
0 OP_NOP ($00)

Table 18 – No Operation Packet

Time Transaction
This bi-directional transaction allows the CoCo to request time and date
information from the Server:

Byte Value
0 OP_TIME ($23)

Table 19 – Time Request Packet

Upon receipt of the packet, the Server shall return the following packet to the
CoCo:

Byte Value
0 Current Year minus 1900 (0-255)
1 Month (1-12)
2 Day (0-31)
3 Hour (0-23)
4 Minute (0-59)
5 Second (0-59)
6 Day of Week (0-6; 0 = Sunday)

Table 20 – Time Delivery Packet

PRINTING
DriveWire 3 introduces a special set of transactions to allow printing to the
Server that it is connected to. The Server shall maintain a printer buffer where
data bytes are added until a flush command is sent. Upon receiving the flush
command, the Server shall prompt the user for a printer to send the buffered
data to.

DriveWire 3 Protocol	 	 Document Revision A

9

Print Transaction
Using this uni-directional transaction, the CoCo notifies the Server that it has a
single byte of data to add to the print queue.

Byte Value
0 OP_PRINT ($50)
1 Byte of data to add to the queue

Table 21 – Print Queue Packet

Upon receiving this packet, the Server shall add the passed byte to its internal
print buffer.

Print Flush Transaction
Using this uni-directional transaction, the CoCo notifies the Server that it has
completed sending printer data and that the Server should send its print buffer
to the printer.

Byte Value
0 OP_PRINTFLUSH ($46)

Table 22 – Flush Print Queue Packet

Upon receiving the flush command, the Server shall prompt the user for a printer
to print the buffer to.

WIREBUG
DriveWire 3 introduces a special set of transactions to facilitate remote
debugging between a CoCo and the Server that it is connected to. This feature,
known as WireBug, allows the transfer of register information and memory from
the CoCo to the Server. Once the CoCo has entered WireBug mode, it can
receive messages initiated by the server.

Because of the nature of the protocol and to increase accuracy and efficiency,
WireBug uses a fixed packet size of 24 bytes and reserves the last byte as an 8-
bit checksum byte.

Enter WireBug Mode Transaction
Using this uni-directional transaction, the CoCo notifies the Server that it has
entered WireBug remote debugging mode.

Byte Value

DriveWire 3 Protocol	 	 Document Revision A

10

0 OP_WIREBUG_MODE ($42)
1 CoCo Type ($02 = CoCo 2, $03 =

CoCo 3)
2 CPU Type ($08 = 6809, $03 = 6309)
3-23 Reserved for future definition

Table 23 – Enter WireBug Mode Packet

Once the CoCo has sent this packet, it shall go into WireBug Mode where it will
wait for commands from the Server.

Along with notifying the Server that the CoCo is in WireBug mode, the packet
also communicates the CoCo and processor type. The Server should use this
information as a cue to what type of processor is in the CoCo, and adjust
accordingly.

Read Registers Transaction (Server Initiated)
Using this bi-directional transaction, the Server requests the contents of the
registers from the CoCo.

Byte Value
0 OP_WIREBUG_READREGS ($52)
1-22 0
23 Checksum

Table 24 – WireBug Read Registers Packet

Upon receipt of the packet, the CoCo shall compute the checksum of bytes 0-22
and compare its computed value against byte 23. If a checksum match does not
occur, then the CoCo shall disregard the packet and send the following response
packet:

Byte Value
0 Checksum mismatch (243)

Table 25 – Checksum Mismatch Packet

Upon receipt of this packet, the Server may elect to restart the transaction.

If a match occurs, the CoCo shall respond with the following packet:

Byte Value
0 OP_WIREBUG_READREGS ($52)

DriveWire 3 Protocol	 	 Document Revision A

11

1 Value of DP register
2 Value of CC register
3 Value of A register
4 Value of B register
5 Value of E register
6 Value of F register
7 Hi-byte of X register
8 Lo-byte of X register
9 Hi-byte of Y register
10 Lo-byte of Y register
11 Hi-byte of U register
12 Lo-byte of U register
13 Value of MD register
14 Hi-byte of V register
15 Lo-byte of V register
16 Hi-byte of SP register
17 Lo-byte of SP register
18 Hi-byte of PC register
19 Lo-byte of PC register
20-22 Don’t Care
23 Checksum

Table 24 – WireBug Read Registers Response Packet

Upon receipt of the packet, the Server shall compute the checksum of bytes 0-22
and compare its computed value against byte 23. If a match occurs, the Server
shall accept the packet’s payload. If a match does not occur, then the Server
may elect to restart the transaction.

Write Registers Transaction (Server Initiated)
Using this bi-directional transaction, the Server requests that the contents of the
packet passed to the CoCo be written to its registers.

The following packet shall be sent to the CoCo:

Byte Value
0 OP_WIREBUG_WRITEREGS ($72)
1 Value of DP register
2 Value of CC register

DriveWire 3 Protocol	 	 Document Revision A

12

3 Value of A register
4 Value of B register
5 Value of E register
6 Value of F register
7 Hi-byte of X register
8 Lo-byte of X register
9 Hi-byte of Y register
10 Lo-byte of Y register
11 Hi-byte of U register
12 Lo-byte of U register
13 Value of MD register
14 Hi-byte of V register
15 Lo-byte of V register
16 Hi-byte of SP register
17 Lo-byte of SP register
18 Hi-byte of PC register
19 Lo-byte of PC register
20-22 Don’t Care
23 Checksum

Table 25 – WireBug Write Registers Packet

Upon receipt of the packet, the CoCo shall compute the checksum of bytes 0-22
and compare its computed value against byte 23. If a match occurs, the CoCo
shall accept the packet’s payload, update its registers and send the following
response packet:

Byte Value
0 No error code (0)

Table 26 – Checksum Match Packet

If a checksum match does not occur, then the CoCo shall disregard the packet
and send the following response packet:

Byte Value
0 Checksum mismatch (243)

DriveWire 3 Protocol	 	 Document Revision A

13

Table 27 – Checksum Mismatch Packet

Upon receipt of this packet, the Server may elect to restart the transaction.

Read Memory Transaction
This bi-directional transaction is sent from the Server to the CoCo. The Server
uses this transaction to obtain memory values from the CoCo.

The following packet is sent from the Server:

Byte Value
0 OP_WIREBUG_READMEM ($4D)
1 Hi-byte of starting memory location
2 Lo-byte of starting memory location
3 Count (0 < n < 23)
4-22 Don’t Care
23 Checksum

Table 28 – Read Memory Request Packet

Upon receipt of the packet, the CoCo shall compute the checksum of bytes 0-22
and compare its computed value against byte 23. If a checksum match does not
occur, then the CoCo shall disregard the packet and send the following response
packet:

Byte Value
0 Checksum mismatch (243)

Table 29 – Checksum Mismatch Packet

Upon receipt of the Checksum Mismatch Packet, the Server may elect to restart
the transaction.

If a match occurs, the CoCo shall validate the memory request. If byte 3 (count)
is not between 1 and 22, then the CoCo shall send the following response
packet:

Byte Value
0 Illegal number (16)

DriveWire 3 Protocol	 	 Document Revision A

14

Table 30 – Illegal Number Packet

If the byte count is between 1 and 22, then the CoCo shall accept the packet’s
payload and send the following response packet:

Byte Value
0 OP_WIREBUG_READMEM ($4D)
1..n Memory from start to end
n+1..22 Don’t care
23 Checksum

Table 31 – Read Memory Response Packet

Upon receipt of the packet, the Server shall compute the checksum of bytes 0 to
22 and compare its computed value against byte 23. If a match occurs, the
Server shall accept the packet’s payload. If a match does not occur, then the
Server may elect to restart the transaction.

Write Memory Transaction
This bi-directional transaction is sent from the Server to the CoCo. The Server
uses this transaction to modify the contents of the CoCo’s memory.

The following packet is sent from the Server:

Byte Value
0 OP_WIREBUG_WRITEMEM ($6D)
1 Hi-byte of starting memory location
2 Lo-byte of starting memory location
3 Count (n bytes where 0 < n < 20)
4-22 Bytes to be modified
23 Checksum

Table 32 – Write Memory Request Packet

Upon receipt of the packet, the CoCo shall compute the checksum of bytes 0-22
and compare its computed value against byte 23. If a checksum match does not
occur, then the CoCo shall disregard the packet and send the following response
packet:

Byte Value
0 Checksum mismatch (243)

DriveWire 3 Protocol	 	 Document Revision A

15

Table 33 – Checksum Mismatch Packet

If a match occurs, the CoCo shall validate the memory request. If byte 3 (count)
is not between 1 and 19, then the CoCo shall send the following response
packet:

Byte Value
0 Illegal number (16)

Table 34 – Illegal Number Packet

If the byte count is between 1 and 19, then the CoCo shall accept the packet’s
payload, update its memory with the contents from the Server, and send the
following response packet:

Byte Value
0 No error code (0)

Table 35 – Checksum Match Packet

Continue Execution Transaction
This uni-directional transaction is sent from the Server to the CoCo. The Server
uses this transaction to notify the CoCo that it should continue executing
normally.

The following packet is sent from the Server:

Byte Value
0 OP_WIREBUG_GO ($47)
1-23 Don’t care

Table 36 – Continue Execution Packet

Upon receiving this packet, the CoCo shall exit WireBug Mode and commence
execution. The Server shall commence responding to CoCo-initiated DriveWire
transactions.

DriveWire 3 Protocol	 	 Document Revision A

16

Appendix A. Error Codes
The error codes used by the Server to indicate an error condition mirror the
same codes used in OS-9. Here is a list of codes that should be used and the
conditions that will trigger them:

• $F3 – CRC Error (if the Server’s computed checksum doesn’t match a
write request from the CoCo)

• $F4 – Read Error (if the Server encounters an error when reading a sector
from a virtual drive)

• $F5 – Write Error (if the Server encounters an error when writing a sector)
• $F6 - Not Ready Error (if the a command requests accesses a non-

existent virtual drive)

Appendix B. DriveWire Checksum Algorithm
Even though DriveWire has been shown to provide very stable and reliable
communications between CoCo and Server, a checksum algorithm has been
employed to bring an added level of data integrity.

This new checksum algorithm is simpler and significantly better at tracking bit
errors than the CRC algorithm employed in DriveWire Version 1, which used a
fast but weak CRC method.

Designers of DriveWire Server software should implement the following
checksum algorithm (presented in C source code) for computing a checksum for
all sectors read and written to/from the CoCo.

int calChecksum(unsigned char *ptr, int count)
{

short Checksum = 0;

while(--count)
{

Checksum += *(ptr++);
}

return (Checksum);
}

Note that WireBug uses an 8-bit checksum instead of a 16 bit one.

DriveWire 3 Protocol	 	 Document Revision A

17

