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763

11 Vectors and the
Geometry of Space

Vectors indicate quantities that involve both magnitude and direction. In Chapter 11, you will study operations of vectors
in the plane and in space. You will also learn how to represent vector operations geometrically. For example, the graphs
shown above represent vector addition in the plane.

u

v

u

v

u

v

u + v

Mark Hunt/Hunt Stock

This chapter introduces vectors and the
three-dimensional coordinate system.
Vectors are used to represent lines and
planes, and are also used to represent 
quantities such as force and velocity. The
three-dimensional coordinate system is used
to represent surfaces such as ellipsoids and
elliptical cones. Much of the material 
in the remaining chapters relies on an
understanding of this system.

In this chapter, you should learn the 
following.

■ How to write vectors, perform basic
vector operations, and represent 
vectors graphically. (11.1)

■ How to plot points in a three-dimensional
coordinate system and analyze vectors
in space. (11.2)

■ How to find the dot product of two 
vectors (in the plane or in space). (11.3)

■ How to find the cross product of two
vectors (in space). (11.4)

■ How to find equations of lines and planes
in space, and how to sketch their graphs.
(11.5)

■ How to recognize and write equations 
of cylindrical and quadric surfaces and 
of surfaces of revolution. (11.6)

■ How to use cylindrical and spherical 
coordinates to represent surfaces in
space. (11.7)

Two tugboats are pushing an ocean liner, as shown above. Each boat is exerting 
a force of 400 pounds. What is the resultant force on the ocean liner? (See 
Section 11.1, Example 7.)

■

■
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■ Write the component form of a vector.
■ Perform vector operations and interpret the results geometrically.
■ Write a vector as a linear combination of standard unit vectors.
■ Use vectors to solve problems involving force or velocity.

Component Form of a Vector
Many quantities in geometry and physics, such as area, volume, temperature, mass,
and time, can be characterized by a single real number scaled to appropriate units of
measure. These are called scalar quantities, and the real number associated with each
is called a scalar.

Other quantities, such as force, velocity, and acceleration, involve both magnitude
and direction and cannot be characterized completely by a single real number. A
directed line segment is used to represent such a quantity, as shown in Figure 11.1.
The directed line segment has initial point and terminal point and its length
(or magnitude) is denoted by Directed line segments that have the same length
and direction are equivalent, as shown in Figure 11.2. The set of all directed line
segments that are equivalent to a given directed line segment is a vector in the
plane and is denoted by In typeset material, vectors are usually denoted by
lowercase, boldface letters such as and When written by hand, however,
vectors are often denoted by letters with arrows above them, such as , , and .

Be sure you understand that a vector represents a set of directed line segments
(each having the same length and direction). In practice, however, it is common not to
distinguish between a vector and one of its representatives.

EXAMPLE 1 Vector Representation by Directed Line Segments

Let be represented by the directed line segment from to and let be
represented by the directed line segment from to Show that and are
equivalent.

Solution Let and be the initial and terminal points of and let
and be the initial and terminal points of as shown in Figure 11.3. You

can use the Distance Formula to show that and have the same length.

Length of 

Length of 

Both line segments have the same direction, because they both are directed toward the
upper right on lines having the same slope.

Slope of 

and

Slope of 

Because and have the same length and direction, you can conclude that the two
vectors are equivalent. That is, and are equivalent. ■uv

RS
\

PQ
\

RS
\

�
4 � 2
4 � 1

�
2
3

PQ
\

�
2 � 0
3 � 0

�
2
3

RS
\

 � RS
\

 � � ��4 � 1�2 � �4 � 2�2 � �13

PQ
\

 � PQ
\

 � � ��3 � 0�2 � �2 � 0�2 � �13

RS
\

PQ
\

u,S�4, 4�R�1, 2�
v,Q�3, 2�P�0, 0�

uv�4, 4�.�1, 2�
u�3, 2�,�0, 0�v

→w→v→u
w.v,u,

v � PQ
\

.
PQ

\

� PQ
\

 �.
Q,PPQ

\
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11.1 Vectors in the Plane

1
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The vectors and are equivalent.
Figure 11.3

vu

QP

Terminal
point

P

Initial
point

Q

A directed line segment
Figure 11.1

Equivalent directed line segments
Figure 11.2
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The directed line segment whose initial point is the origin is often the most
convenient representative of a set of equivalent directed line segments such as those
shown in Figure 11.3. This representation of is said to be in standard position. A
directed line segment whose initial point is the origin can be uniquely represented by
the coordinates of its terminal point as shown in Figure 11.4.

This definition implies that two vectors and are equal if and
only if and 

The following procedures can be used to convert directed line segments to
component form or vice versa.

1. If and are the initial and terminal points of a directed line
segment, the component form of the vector represented by is 

Moreover, from the Distance Formula you can see that the
length (or magnitude) of is

2. If can be represented by the directed line segment, in standard
position, from to 

The length of is also called the norm of If is a unit vector.
Moreover, if and only if is the zero vector 

EXAMPLE 2 Finding the Component Form and Length of a Vector

Find the component form and length of the vector that has initial point and
terminal point 

Solution Let and Then the components
of are

So, as shown in Figure 11.5, and the length of is

■ � 13.

 � �169

 � v � � ���5�2 � 122

vv � ��5, 12�,

v2 � q2 � p2 � 5 � ��7� � 12.

v1 � q1 � p1 � �2 � 3 � �5

v � �v1, v2�
Q��2, 5� � �q1, q2 �.P�3, �7� � � p1, p2 �

��2, 5�.
�3, �7�v

0.v� v � � 0
v� v � � 1,v.v

Q�v1, v2 �.P�0, 0�
vv � �v1, v2�,

v
�q1 � p1, q2 � p2�.

�v1, v2� �PQ
\

v
Q�q1, q2 �P�p1, p2�

u2 � v2.u1 � v1

v � �v1, v2�u � �u1, u2�

Q�v1, v2�,

v
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DEFINITION OF COMPONENT FORM OF A VECTOR IN THE PLANE

If is a vector in the plane whose initial point is the origin and whose terminal
point is then the component form of is given by

The coordinates and are called the components of If both the initial
point and the terminal point lie at the origin, then is called the zero vector
and is denoted by 0 � �0, 0�.

v
v.v2v1

v � �v1, v2�.

v�v1, v2�,
v

Length of a vector

 � �v1
2 � v2

2 .

 � v � � ��q1 � p1�2 � �q2 � p2�2

x
1 2 3 4

4

3

2

1

(v1, v2)

(0, 0)

Q

P

v

v = 〈v1, v2〉

y

A vector in standard position
Figure 11.4
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Figure 11.5

v: v � ��5, 12�
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Vector Operations

Geometrically, the scalar multiple of a vector and a scalar is the vector that is
times as long as as shown in Figure 11.6. If is positive, has the same

direction as If is negative, has the opposite direction.
The sum of two vectors can be represented geometrically by positioning the

vectors (without changing their magnitudes or directions) so that the initial point of
one coincides with the terminal point of the other, as shown in Figure 11.7. The 
vector called the resultant vector, is the diagonal of a parallelogram having 
and as its adjacent sides.

Figure 11.8 shows the equivalence of the geometric and algebraic definitions of
vector addition and scalar multiplication, and presents (at far right) a geometric
interpretation of u � v.

v
uu � v,

cvcv.
cvcv,�c�

cv

766 Chapter 11 Vectors and the Geometry of Space

DEFINITIONS OF VECTOR ADDITION AND SCALAR MULTIPLICATION

Let and be vectors and let be a scalar.

1. The vector sum of and is the vector 

2. The scalar multiple of and is the vector 

3. The negative of is the vector 

4. The difference of and is 

u � v � u � ��v� � �u1 � v1, u2 � v2�.

vu

�v � ��1�v � ��v1, �v2�.

v

cu � �cu1, cu2�.uc

u � v � �u1 � v1, u2 � v2�.vu

cv � �v1, v2�u � �u1, u2�

u

v

u

v

u + v
u

v

u + v

u

v

u + v

(u1 + v1, u2 + v2)

(v1, v2)

(u1, u2)

u1

u2

v1

v2

u

ku

(ku1, ku2)

(u1, u2)

u1

ku1

u2

ku2

u u − v

v

−v

u + (−v)

To find 

Figure 11.7

u � v, (1) move the initial point of v
to the terminal point of u, or

(2) move the initial point of u
to the terminal point of v.

Vector addition
Figure 11.8

Scalar multiplication Vector subtraction

vvv 2v −v −1
2

3
2

The scalar multiplication of v
Figure 11.6

WILLIAM ROWAN HAMILTON
(1805–1865)

Some of the earliest work with vectors was
done by the Irish mathematician William
Rowan Hamilton. Hamilton spent many
years developing a system of vector-like
quantities called quaternions. Although
Hamilton was convinced of the benefits of
quaternions, the operations he defined did not
produce good models for physical phenomena.
It wasn’t until the latter half of the nineteenth
century that the Scottish physicist James
Maxwell (1831–1879) restructured Hamilton’s
quaternions in a form useful for representing
physical quantities such as force, velocity,
and acceleration.
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EXAMPLE 3 Vector Operations

Given and find each of the vectors.

a. b. c.

Solution

a.

b.

c. Using you have

■

Vector addition and scalar multiplication share many properties of ordinary
arithmetic, as shown in the following theorem.

 � �4, 13�.
 � ��2 � 6, 5 � 8�

v � 2w � ��2, 5� � �6, 8�

2w � �6, 8�,
w � v � �w1 � v1, w2 � v2� � �3 � ��2�, 4 � 5� � �5, �1�

1
2v � �1

2��2�, 12�5�� � ��1, 52�

v � 2ww � v1
2v

w � �3, 4�,v � ��2, 5�

11.1 Vectors in the Plane 767

THEOREM 11.1 PROPERTIES OF VECTOR OPERATIONS

Let and be vectors in the plane, and let and be scalars.

1. Commutative Property

2. Associative Property

3. Additive Identity Property

4. Additive Inverse Property

5.

6. Distributive Property

7. Distributive Property

8. 1�u� � u, 0�u� � 0

c�u � v� � cu � cv

�c � d �u � cu � du

c�du� � �cd �u
u � ��u� � 0

u � 0 � u

�u � v� � w � u � �v � w�
u � v � v � u

dcwv,u,

PROOF The proof of the Associative Property of vector addition uses the Associative
Property of addition of real numbers.

Similarly, the proof of the Distributive Property of vectors depends on the Distributive
Property of real numbers.

The other properties can be proved in a similar manner. ■

 � �cu1, cu2� � �du1, du2� � cu � du

 � �cu1 � du1, cu2 � du2�
 � ��c � d�u1, �c � d�u2�

 �c � d�u � �c � d��u1, u2�

 � �u1, u2� � �v1 � w1, v2 � w2� � u � �v � w�
 � �u1 � �v1 � w1�, u2 � �v2 � w2 ��
 � ��u1 � v1� � w1, �u2 � v2 � � w2�
 � �u1 � v1, u2 � v2� � �w1, w2�

 �u � v� � w � 	�u1, u2� � �v1, v2�
 � �w1, w2�
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Any set of vectors (with an accompanying set of scalars) that satisfies the eight
properties given in Theorem 11.1 is a vector space.* The eight properties are the 
vector space axioms. So, this theorem states that the set of vectors in the plane (with
the set of real numbers) forms a vector space.

In many applications of vectors, it is useful to find a unit vector that has the same
direction as a given vector. The following theorem gives a procedure for doing this.

In Theorem 11.3, is called a unit vector in the direction of The process of
multiplying by to get a unit vector is called normalization of v.1�� v �v

v.u

768 Chapter 11 Vectors and the Geometry of Space

PROOF Because it follows that

■ � �c� � v � .

 � �c��v1
2 � v2

2

 � �c2�v1
2 � v2

2�
 � �c2v1

2 � c2v2
2

� cv � � ��cv1, cv2�� � ��cv1�2 � �cv2 �2

cv � �cv1, cv2�,

PROOF Because is positive and you can conclude that has
the same direction as To see that note that

So, has length 1 and the same direction as ■v.u

 � 1.

 �
1

� v �
 � v �

 � � 1
� v �� � v �

 � u � � � � 1
� v � 
v �

� u � � 1,v.
uu � �1�� v ��v,1�� v �

THEOREM 11.2 LENGTH OF A SCALAR MULTIPLE

Let be a vector and let be a scalar. Then

is the absolute value of c.�c�� c v � � �c� � v �.

cv

THEOREM 11.3 UNIT VECTOR IN THE DIRECTION OF v

If is a nonzero vector in the plane, then the vector

has length 1 and the same direction as v.

u �
v

� v �
�

1
� v �

v

v

* For more information about vector spaces, see Elementary Linear Algebra, Sixth Edition, by
Larson and Falvo (Boston: Houghton Mifflin Harcourt Publishing Company, 2009).

EMMY NOETHER (1882–1935)

One person who contributed to our knowledge
of axiomatic systems was the German 
mathematician Emmy Noether. Noether is
generally recognized as the leading woman
mathematician in recent history.
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■ FOR FURTHER INFORMATION For
more information on Emmy Noether,
see the article “Emmy Noether, Greatest
Woman Mathematician” by Clark
Kimberling in The Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.
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EXAMPLE 4 Finding a Unit Vector

Find a unit vector in the direction of and verify that it has length 1.

Solution From Theorem 11.3, the unit vector in the direction of is

This vector has length 1, because

■

Generally, the length of the sum of two vectors is not equal to the sum of 
their lengths. To see this, consider the vectors and as shown in Figure 11.9. By
considering and as two sides of a triangle, you can see that the length of the third
side is and you have

Equality occurs only if the vectors and have the same direction. This result is
called the triangle inequality for vectors. (You are asked to prove this in Exercise 91,
Section 11.3.)

Standard Unit Vectors
The unit vectors and are called the standard unit vectors in the plane
and are denoted by

as shown in Figure 11.10. These vectors can be used to represent any vector uniquely,
as follows.

The vector is called a linear combination of and The scalars 
and are called the horizontal and vertical components of 

EXAMPLE 5 Writing a Linear Combination of Unit Vectors

Let be the vector with initial point and terminal point and let
Write each vector as a linear combination of and 

a. b.

Solution

a.

b.

■ � �12i � 19j

 � �6i � 16j � 6i � 3j

 w � 2u � 3v � 2��3i � 8j� � 3�2i � j�
 � ��3, 8� � �3i � 8j

 � ��1 � 2, 3 � ��5��
 u � �q1 � p1, q2 � p2�

w � 2u � 3vu

j.iv � 2i � j.
��1, 3�,�2, �5�u

v.v2

v1j.iv � v1 i � v2 j

v � �v1, v2� � �v1, 0� � �0, v2� � v1�1, 0� � v2�0, 1� � v1 i � v2 j

�0, 1��1, 0�

vu

� u � v � � � u � � � v �.

�u � v �,
vu

vu

�� �2
�29


2

� � 5
�29


2

�� 4
29

�
25
29

��29
29

� 1.

v
� v �

�
��2, 5�

���2�2 � �5�2
�

1
�29

 ��2, 5� � � �2
�29

, 
5

�29�.

v

v � ��2, 5�

11.1 Vectors in the Plane 769

and Standard unit vectorsj � �0, 1�i � �1, 0�

x

u

v

u + v

y

Triangle inequality
Figure 11.9

x
1

1

2

2

j = 〈0, 1〉

i = 〈1, 0〉

y

Standard unit vectors i and j
Figure 11.10
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If is a unit vector and is the angle (measured counterclockwise) from the
positive axis to then the terminal point of lies on the unit circle, and you have

Unit vector

as shown in Figure 11.11. Moreover, it follows that any other nonzero vector making
an angle with the positive axis has the same direction as and you can write

EXAMPLE 6 Writing a Vector of Given Magnitude and Direction

The vector has a magnitude of 3 and makes an angle of with the positive
axis. Write as a linear combination of the unit vectors and 

Solution Because the angle between and the positive axis is you can
write the following.

■

Applications of Vectors
Vectors have many applications in physics and engineering. One example is force. A
vector can be used to represent force, because force has both magnitude and direction.
If two or more forces are acting on an object, then the resultant force on the object is
the vector sum of the vector forces.

EXAMPLE 7 Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12. Each boat is
exerting a force of 400 pounds. What is the resultant force on the ocean liner?

Solution Using Figure 11.12, you can represent the forces exerted by the first and
second tugboats as

The resultant force on the ocean liner is

So, the resultant force on the ocean liner is approximately 752 pounds in the direction
of the positive axis. ■

In surveying and navigation, a bearing is a direction that measures the acute
angle that a path or line of sight makes with a fixed north-south line. In air navigation,
bearings are measured in degrees clockwise from north.

x-

� 752i. � 800 cos�20��i

 � 	400 cos�20��i � 400 sin�20��j
 � 	400 cos�20��i � 400 sin�20��j

 F � F1 � F2

 � 400 cos�20��i � 400 sin�20��j.

 F2 � 400�cos��20��, sin��20���
 � 400 cos�20��i � 400 sin�20��j

 F1 � 400�cos 20�, sin 20��

 �
3�3

2
 i �

3
2

 j

 � 3 cos 
�

6
 i � 3 sin 

�

6
 j

 v � � v � cos � i � � v � sin � j

� � ��6,x-v

j.ivx-
30� � ��6v

v � � v ��cos �, sin �� � � v � cos � i � � v � sin � j.

u,x-�
v

u � �cos �, sin �� � cos �i � sin �j

uu,x-
�u

770 Chapter 11 Vectors and the Geometry of Space

(cos   , sin   )

x

u

θ

θ θ

θ

θ

sin

cos−1 1

−1

1

y

The angle from the positive -axis to the
vector u
Figure 11.11

x�

x

400 cos(−20°)

400 cos(20°)

−20°

20°

400

400

F2

F1

400 sin(−20°)

400 sin(20°)

y

The resultant force on the ocean liner that is
exerted by the two tugboats
Figure 11.12
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EXAMPLE 8 Finding a Velocity

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane
is traveling at a speed of 500 miles per hour with a bearing of as shown in Figure
11.13(a). As the airplane reaches a certain point, it encounters wind with a velocity of
70 miles per hour in the direction N E ( east of north), as shown in Figure
11.13(b). What are the resultant speed and direction of the airplane?

Solution Using Figure 11.13(a), represent the velocity of the airplane (alone) as

The velocity of the wind is represented by the vector

The resultant velocity of the airplane (in the wind) is

To find the resultant speed and direction, write Because
you can write

The new speed of the airplane, as altered by the wind, is approximately 522.5 miles per
hour in a path that makes an angle of with the positive axis. ■x-112.6�

v � 522.5��200.5
522.5

 i �
482.5
522.5

 j
 � 522.5 	cos�112.6��i � sin�112.6��j
.

� v � � ���200.5�2 � �482.5�2 � 522.5,
v � � v ��cos � i � sin � j�.

 � �200.5 i � 482.5 j.

 � 500 cos�120��i � 500 sin�120��j � 70 cos�45��i � 70 sin�45��j v � v1 � v2

v2 � 70 cos�45��i � 70 sin�45��j.

v1 � 500 cos�120��i � 500 sin�120��j.

45�45�

330�,
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In Exercises 1–4, (a) find the component form of the vector 
and (b) sketch the vector with its initial point at the origin.

1. 2.

3. 4.

In Exercises 5– 8, find the vectors and whose initial and
terminal points are given. Show that and are equivalent.

5. 6.

7. 8.

In Exercises 9–16, the initial and terminal points of a vector 
are given. (a) Sketch the given directed line segment, (b) write
the vector in component form, (c) write the vector as the linear
combination of the standard unit vectors and and (d) sketch
the vector with its initial point at the origin.

9. 10.

11. 12. ��5, �1��0, �4��6, �1��8, 3�
�3, 6��4, �6��5, 5��2, 0�

Terminal
   Point   Initial PointTerminal

   Point   Initial Point

j,i

v

�10, 13�, �25, 10�v:�3, 10�, �9, 5�v:

��4, �1�, �11, �4�u:�0, 3�, �6, �2�u:

�2, �1�, �7, 7�v:�1, 4�, �3, 8�v:

��4, 0�, �1, 8�u:�3, 2�, �5, 6�u:

vu
vu

x
−1−2 2

2

4

1

1

(−1, 3)

(2, 1)

y

v
x

−6

−4 −2 2

2

4

(2, −3)(−4, −3)

y

v

x
1

1

−2
−1 2

2
3

4

4

5 6

(3, 4)

(3, −2)

y

v

x
1

1

−1 2

2

3

3

4

4

5

(1, 2)

(5, 4)
y

v

v

11.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x

120°

v1

y

S

EW

N

(a) Direction without wind

S

EW

N

x

v1

v

v2

Wind

y

θ

(b) Direction with wind
Figure 11.13

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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13. 14.

15. 16.

In Exercises 17 and 18, sketch each scalar multiple of 

17.

(a) (b) (c) (d)

18.

(a) (b) (c) (d)

In Exercises 19–22, use the figure to sketch a graph of the 
vector. To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

19. 20.

21. 22.

In Exercises 23 and 24, find (a) (b) and (c) 

23. 24.

In Exercises 25–28, find the vector where and
Illustrate the vector operations geometrically.

25. 26.

27. 28.

In Exercises 29 and 30, the vector and its initial point are
given. Find the terminal point.

29. Initial point:

30. Initial point:

In Exercises 31–36, find the magnitude of 

31. 32.

33. 34.

35. 36.

In Exercises 37–40, find the unit vector in the direction of and
verify that it has length 1.

37. 38.

39. 40.

In Exercises 41– 44, find the following.

(a) (b) (c)

(d) (e) (f)

41. 42.

43. 44.

In Exercises 45 and 46, sketch a graph of and Then
demonstrate the triangle inequality using the vectors and 

45. 46.

In Exercises 47–50, find the vector with the given magnitude
and the same direction as 

47.

48.

49.

50.

In Exercises 51–54, find the component form of given its
magnitude and the angle it makes with the positive -axis.

51. 52.

53. 54.

In Exercises 55–58, find the component form of given the
lengths of and and the angles that and make with the
positive -axis.

55. 56.

57. 58.

� v � � 5,  �v � 0.5� v � � 1,  �v � 2

� u � � 5,  �u � �0.5� u � � 2,  �u � 4

� v � � 2,  �v � 60�� v � � 3,  �v � 45�

� u � � 4,  �u � 0�� u � � 1,  �u � 0�

x
vuvu

u � v

� � 3.5�� v � � 4,� � 150�� v � � 2,

� � 120�� v � � 5,� � 0�� v � � 3,

x
v

u � ��3, 3�� v � � 2

u � ��1, 2�� v � � 5

u � �1, 1�� v � � 4

u � �0, 3�� v � � 6

Direction     Magnitude

u.
v

v � �1, �2�u � ��3, 2�,v � �5, 4�u � �2, 1�,

v.u
u 1 v.v,u,

v � �5, 5�v � �2, 3�
u � �2, �4�u � �1, 12�
v � �3, �3�v � ��1, 2�
u � �0, 1�u � �1, �1�

� u � v
� u � v � ��  

v
� v �

 ��  
u

� u �
 �

� u � v �� v �� u �

v � ��6.2, 3.4�v � �3
2, 52�

v � ��5, 15�v � �3, 12�

v

v � �10i � 3jv � 6i � 5j

v � �12, �5�v � �4, 3�
v � �3iv � 7i

v.

�5, 3�v � �4, �9�;
�4, 2�v � ��1, 3�;

v

v � 5u � 3wv � u � 2w

v � u � wv �
3
2u

w � �1, 2�.
u � �2, �1�v

v � �8, 25�v � �2, �5�
u � ��3, �8�u � �4, 9�

2u 1 5v.v � u,2
3 u,

u � 2vu � v

2u�u

x

u v

y

�6v0v�
1
2v4v

v � ��2, 3�

2
3v7

2v�3v2v

v � �3, 5�

v.

�0.84, 1.25��0.12, 0.60��1
2, 3��3

2, 43�
��3, �1��7, �1��6, 6��6, 2�

Terminal
    Point     Initial PointTerminal

   Point   Initial Point
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59. In your own words, state the difference between a scalar
and a vector. Give examples of each.

60. Give geometric descriptions of the operations of addition of
vectors and multiplication of a vector by a scalar.

61. Identify the quantity as a scalar or as a vector. Explain your
reasoning.

(a) The muzzle velocity of a gun

(b) The price of a company’s stock

62. Identify the quantity as a scalar or as a vector. Explain your
reasoning.

(a) The air temperature in a room

(b) The weight of a car

WRITING ABOUT CONCEPTS
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In Exercises 63–68, find and such that where
and 

63. 64.

65. 66.

67. 68.

In Exercises 69–74, find a unit vector (a) parallel to and 
(b) perpendicular to the graph of at the given point. Then
sketch the graph of and sketch the vectors at the given point.

69.

70.

71.

72.

73.

74.

In Exercises 75 and 76, find the component form of v given the
magnitudes of and and the angles that and 
make with the positive -axis.

75. 76.

77. Programming You are given the magnitudes of and and
the angles that and make with the positive axis. Write a pro-
gram for a graphing utility in which the output is the following.

(a) (b)

(c) The angle that makes with the positive axis

(d) Use the program to find the magnitude and direction of the
resultant of the vectors shown.

In Exercises 79 and 80, use a graphing utility to find the 
magnitude and direction of the resultant of the vectors.

79. 80.

81. Resultant Force Forces with magnitudes of 500 pounds and
200 pounds act on a machine part at angles of and 
respectively, with the -axis (see figure). Find the direction and
magnitude of the resultant force.

Figure for 81 Figure for 82

82. Numerical and Graphical Analysis Forces with magnitudes
of 180 newtons and 275 newtons act on a hook (see figure). The
angle between the two forces is degrees.

(a) If find the direction and magnitude of the resultant
force.

(b) Write the magnitude and direction of the resultant
force as functions of where 

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the two functions and 

(e) Explain why one of the functions decreases for increasing
values of whereas the other does not.

83. Resultant Force Three forces with magnitudes of 75 pounds,
100 pounds, and 125 pounds act on an object at angles of 

and respectively, with the positive axis. Find the
direction and magnitude of the resultant force.

84. Resultant Force Three forces with magnitudes of 400
newtons, 280 newtons, and 350 newtons act on an object at
angles of and respectively, with the positive

axis. Find the direction and magnitude of the resultant force.

85. Think About It Consider two forces of equal magnitude
acting on a point.

(a) If the magnitude of the resultant is the sum of the magni-
tudes of the two forces, make a conjecture about the angle
between the forces.

x-
135�,45�,�30�,

x-120�,45�,
30�,

�

	.M

0� � � � 180�.�,
	M

� � 30�,

�

x
275 N

180 N

θ

y

30°

−45°

500 lb

200 lb

x

x
�45�,30�

x

F1

F2

F3

2

4

3

200°
140°

−10°

y

x

F1

F2

F3

22.5

3

33°

110°

−125°

y

x

u

v32

45

20°

−50°

y

x-u � v

� u � v �u � v

x-vu
vu

� u � v � � 6, � � 120�� u � v � � �2, � � 90�

� u � � 4, � � 30�� u � � 1, � � 45�

x
u 1 vuu 1 vu

��

4
, 1
f �x� � tan x

�3, 4�f �x� � �25 � x2

��2, �8�f �x� � x3

�1, 1�f �x� � x3

�1, 4�f �x� � �x2 � 5

�3, 9�f �x� � x2

Point       Function               

f
f

v � ��1, 7�v � �1, 1�
v � �3, 3�v � �3, 0�
v � �0, 3�v � �2, 1�

w � �1, �1�.u � �1, 2�
v � au 1 bw,ba
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78. The initial and terminal points of vector are and
respectively.

(a) Write in component form.

(b) Write as the linear combination of the standard unit
vectors and 

(c) Sketch with its initial point at the origin.

(d) Find the magnitude of v.

v

j.i
v

v

�9, 1�,
�3, �4�v

CAPSTONE

� 0� 30� 60� 90� 120� 150� 180�

M

�
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(b) If the resultant of the forces is make a conjecture about
the angle between the forces.

(c) Can the magnitude of the resultant be greater than the sum
of the magnitudes of the two forces? Explain.

86. Graphical Reasoning Consider two forces and

(a) Find 

(b) Determine the magnitude of the resultant as a function of 
Use a graphing utility to graph the function for

(c) Use the graph in part (b) to determine the range of the
function. What is its maximum and for what value of does
it occur? What is its minimum and for what value of does
it occur?

(d) Explain why the magnitude of the resultant is never 0.

87. Three vertices of a parallelogram are 
Find the three possible fourth vertices (see figure).

88. Use vectors to find the points of trisection of the line segment
with endpoints and 

Cable Tension In Exercises 89 and 90, use the figure to
determine the tension in each cable supporting the given load.

89. 90.

91. Projectile Motion A gun with a muzzle velocity of 1200 feet
per second is fired at an angle of above the horizontal. Find
the vertical and horizontal components of the velocity.

92. Shared Load To carry a 100-pound cylindrical weight, two
workers lift on the ends of short ropes tied to an eyelet on the
top center of the cylinder. One rope makes a angle away
from the vertical and the other makes a angle (see figure).

(a) Find each rope’s tension if the resultant force is vertical.

(b) Find the vertical component of each worker’s force.

Figure for 92 Figure for 93

93. Navigation A plane is flying with a bearing of Its
speed with respect to the air is 900 kilometers per hour. The
wind at the plane’s altitude is from the southwest at 100
kilometers per hour (see figure). What is the true direction of
the plane, and what is its speed with respect to the ground?

94. Navigation A plane flies at a constant groundspeed of 400
miles per hour due east and encounters a 50-mile-per-hour
wind from the northwest. Find the airspeed and compass
direction that will allow the plane to maintain its groundspeed
and eastward direction.

True or False? In Exercises 95–100, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

95. If and have the same magnitude and direction, then and
are equivalent.

96. If is a unit vector in the direction of then 

97. If is a unit vector, then 

98. If then 

99. If then 

100. If and have the same magnitude but opposite directions,
then 

101. Prove that and 
are unit vectors for any angle 

102. Geometry Using vectors, prove that the line segment joining
the midpoints of two sides of a triangle is parallel to, and one-
half the length of, the third side.

103. Geometry Using vectors, prove that the diagonals of a
parallelogram bisect each other.

104. Prove that the vector bisects the angle
between and 

105. Consider the vector Describe the set of all points
such that �u � � 5.�x, y�

u � �x, y�.
v.u

w � � u �v � � v �u

�.
v � �sin ��i � �cos ��ju � �cos ��i � �sin ��j

u � v � 0.
vu

� a i � bj � � �2a.a � b,

a � �b.v � ai � bj � 0,

a2 � b2 � 1.u � ai � bj

v � � v � u.v,u

v
uvu

302�.

45°32°
900 km/hr

100 km/hr

S

EW

N

100 lb

20° 30°

30�
20�

6�

A B

C

5000 lb

24 in.

10 in. 20 in.
50° 30°A B

C

3000 lb

�7, 5�.�1, 2�

x
1

1

2

2

3

3

4

4

5

5

6

6

7 8 9 10−4 −3−2−1

(1, 2)
(3, 1)

(8, 4)

y

�1, 2�, �3, 1�, and �8, 4�.

�
�

0 � � < 2�.

�.

� F1 � F2 �.
F2 � 10�cos �, sin ��.

F1 � �20, 0�

0,
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106. A coast artillery gun can fire at any angle of elevation
between and in a fixed vertical plane. If air resistance
is neglected and the muzzle velocity is constant 
determine the set of points in the plane and above the
horizontal which can be hit.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

H
�� v0�,

90�0�

PUTNAM EXAM CHALLENGE
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11.2 Space Coordinates and Vectors in Space 775

11.2 Space Coordinates and Vectors in Space
■ Understand the three-dimensional rectangular coordinate system.
■ Analyze vectors in space.
■ Use three-dimensional vectors to solve real-life problems.

Coordinates in Space
Up to this point in the text, you have been primarily concerned with the 
two-dimensional coordinate system. Much of the remaining part of your study of
calculus will involve the three-dimensional coordinate system.

Before extending the concept of a vector to three dimensions, you must be able
to identify points in the three-dimensional coordinate system. You can construct
this system by passing a axis perpendicular to both the and axes at the origin.
Figure 11.14 shows the positive portion of each coordinate axis. Taken as pairs,
the axes determine three coordinate planes: the -plane, the -plane, and the

-plane. These three coordinate planes separate three-space into eight octants.
The first octant is the one for which all three coordinates are positive. In this three-
dimensional system, a point in space is determined by an ordered triple 
where and are as follows.

directed distance from plane to 

directed distance from plane to 

directed distance from plane to 

Several points are shown in Figure 11.15.

Points in the three-dimensional coordinate system are 
represented by ordered triples.
Figure 11.15

A three-dimensional coordinate system can have either a left-handed or a right-
handed orientation. To determine the orientation of a system, imagine that you are
standing at the origin, with your arms pointing in the direction of the positive and

axes, and with the axis pointing up, as shown in Figure 11.16. The system is
right-handed or left-handed depending on which hand points along the axis. In this
text, you will work exclusively with the right-handed system.

x-
z-y-

x-

x

y
8

−2−4
−8

4
3

5
6

−3
−4

−5
−6

1

6

5

4

3

2

(2, −5, 3)

(−2, 5, 4)

(3, 3, −2)

(1, 6, 0)

z

Pxy-z �

Pxz-y �

Pyz-x �

zy,x,
�x, y, z�P

yz
xzxy

y-x-z-

NOTE The three-dimensional rotatable graphs that are available in the premium eBook for
this text will help you visualize points or objects in a three-dimensional coordinate system. ■

y

x

z

Right-handed 
system
Figure 11.16

x

y

z

Left-handed 
system

y

yz-planexz-plane

xy-planex

z

The three-dimensional coordinate system
Figure 11.14
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Many of the formulas established for the two-dimensional coordinate system can
be extended to three dimensions. For example, to find the distance between two points
in space, you can use the Pythagorean Theorem twice, as shown in Figure 11.17. By
doing this, you will obtain the formula for the distance between the points 
and 

EXAMPLE 1 Finding the Distance Between Two Points in Space

The distance between the points and is

Distance Formula

■

A sphere with center at and radius is defined to be the set of all points
such that the distance between and is You can use the

Distance Formula to find the standard equation of a sphere of radius centered at
If is an arbitrary point on the sphere, the equation of the sphere is

as shown in Figure 11.18. Moreover, the midpoint of the line segment joining the
points and has coordinates

EXAMPLE 2 Finding the Equation of a Sphere

Find the standard equation of the sphere that has the points and 
as endpoints of a diameter.

Solution Using the Midpoint Formula, the center of the sphere is

Midpoint Formula

By the Distance Formula, the radius is

Therefore, the standard equation of the sphere is

Equation of sphere

■

�x �
5
2�

2

� � y � 1�2 � z2 �
97
4

.

r ���0 �
5
2�

2

� �4 � 1�2 � ��3 � 0�2 ��97
4

�
�97

2
.

�5 � 0
2

, 
�2 � 4

2
, 

3 � 3
2 � � �5

2
, 1, 0�.

�0, 4, �3��5, �2, 3�

�x2, y2, z2��x1, y1, z1�

�x, y, z��x0, y0, z0�.
r,

r.�x0, y0, z0��x, y, z��x, y, z�
r�x0, y0, z0�

 � 3�3.

 � �27

 � �1 � 1 � 25

 d � ��1 � 2�2 � �0 � 1�2 � ��2 � 3�2

�1, 0, �2��2, �1, 3�

�x2, y2, z2�.
�x1, y1, z1�
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Distance Formulad � ��x2 � x1�2 � � y2 � y1�2 � �z2 � z1�2

Equation of sphere�x � x0�2 � �y � y0�2 � �z � z0 �2 � r2

Midpoint Formula�x1 � x2

2
, 

y1 � y2

2
, 

z1 � z2

2 �.

y
x

Q

P

d

(x1, y1, z1) (x2, y2, z1)

(x2, y2, z2)

⏐z2 − z1⏐

(x2 − x1)2 + (y2 − y1)2

z

The distance between two points in space
Figure 11.17

(x0, y0, z0)

x

y

(x, y, z)
r

z

Figure 11.18
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Vectors in Space
In space, vectors are denoted by ordered triples The zero vector is
denoted by Using the unit vectors 
and in the direction of the positive axis, the standard unit vector
notation for is

as shown in Figure 11.19. If is represented by the directed line segment from
to as shown in Figure 11.20, the component form of is

given by subtracting the coordinates of the initial point from the coordinates of the
terminal point, as follows.

EXAMPLE 3 Finding the Component Form of a Vector in Space

Find the component form and magnitude of the vector having initial point 
and terminal point Then find a unit vector in the direction of 

Solution The component form of is

which implies that its magnitude is

The unit vector in the direction of is

■u �
v

�v �
�

1

�62
�2, �7, 3	 � 
 2

�62
, 

�7
�62

, 
3

�62�.

v

�v � � �22 � ��7�2 � 32 � �62.

 � �2, �7, 3	
 v � �q1 � p1, q2 � p2, q3 � p3	 � �0 � ��2�, �4 � 3, 4 � 1	

v

v.�0, �4, 4�.
��2, 3, 1�v

v � �v1, v2, v3	 � �q1 � p1, q2 � p2, q3 � p3	

vQ�q1, q2, q3�,P� p1, p2, p3�
v

v � v1i � v2 j � v3k

v
z-k � �0, 0, 1	

j � �0, 1, 0	,i � �1, 0, 0	,0 � �0, 0, 0	.
v � �v1, v2, v3	.
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x

y

〈0, 1, 0〉

〈1, 0, 0〉

〈0, 0, 1〉

〈v1, v2, v3〉

i
j

k

v

z

The standard unit vectors in space
Figure 11.19

x

y

Q(q1, q2, q3)

P(p1, p2, p3) v

v = 〈q1 − p1, q2 − p2, q3 − p3〉

z

Figure 11.20

VECTORS IN SPACE

Let and be vectors in space and let be a
scalar.

1. Equality of Vectors: if and only if and 

2. Component Form: If is represented by the directed line segment from
to then

3. Length:

4. Unit Vector in the Direction of :

5. Vector Addition:

6. Scalar Multiplication: cv � �cv1, cv2, cv3	
v � u � �v1 � u1, v2 � u2, v3 � u3	

v � 0
v

�v �
� � 1

�v �� �v1, v2, v3	,v

�v � � �v1
2 � v2

2 � v3
2

v � �v1, v2, v3	 � �q1 � p1, q2 � p2, q3 � p3	.

Q�q1, q2, q3�,P� p1, p2, p3�
v

u3 � v3.u1 � v1, u2 � v2,u � v

cv � �v1, v2, v3	u � �u1, u2, u3	

NOTE The properties of vector addition and scalar multiplication given in Theorem 11.1 are
also valid for vectors in space. ■
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Recall from the definition of scalar multiplication that positive scalar multiples of
a nonzero vector have the same direction as whereas negative multiples have the
direction opposite of In general, two nonzero vectors and are parallel if there
is some scalar such that 

For example, in Figure 11.21, the vectors and are parallel because and

EXAMPLE 4 Parallel Vectors

Vector has initial point and terminal point Which of the
following vectors is parallel to 

a.

b.

Solution Begin by writing in component form.

a. Because you can conclude that is
parallel to 

b. In this case, you want to find a scalar such that

Because there is no for which the equation has a solution, the vectors are not
parallel.

EXAMPLE 5 Using Vectors to Determine Collinear Points

Determine whether the points and are collinear.

Solution The component forms of and are

and

These two vectors have a common initial point. So, and lie on the same line
if and only if and are parallel—which they are because as shown
in Figure 11.22. ■

PR
\

� 3 PQ
\

,PR
\

PQ
\

RQ,P,

PR
\

� �4 � 1, 7 � ��2�, �6 � 3	 � �3, 9, �9	.

PQ
\

� �2 � 1, 1 � ��2�, 0 � 3	 � �1, 3, �3	

PR
\

PQ
\

R�4, 7, �6�P�1, �2, 3�, Q�2, 1, 0�,

c

 4 �  2c  →  c �  2

�16 �  8c  →  c � �2

 12 � �6c  →  c � �2

�12, �16, 4	 � c��6, 8, 2	.

c

w.
uu � �3, �4, �1	 � �

1
2��6, 8, 2	 � �

1
2 w,

w � ��4 � 2, 7 � ��1�, 5 � 3	 � ��6, 8, 2	

w

v � �12, �16, 4	

u � �3, �4, �1	

w?
��4, 7, 5�.�2, �1, 3�w

w � �v.
u � 2vwv,u,

u � cv.c
vuv.

v,v

778 Chapter 11 Vectors and the Geometry of Space

DEFINITION OF PARALLEL VECTORS

Two nonzero vectors and are parallel if there is some scalar such that
u � cv.

cvu

x

u = 2v
w = −v

w

u

v

y

Parallel vectors
Figure 11.21

x y

2
4

6
8

6
8

4

2

(1, −2, 3)

(2, 1, 0)

(4, 7, −6)

P

Q

R

z

The points and lie on the same line.
Figure 11.22

RQ,P,
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EXAMPLE 6 Standard Unit Vector Notation

a. Write the vector in component form.

b. Find the terminal point of the vector given that the initial point
is 

Solution

a. Because is missing, its component is 0 and

b. You need to find such that This implies that
and The solution of these three

equations is and Therefore, ■

Application

EXAMPLE 7 Measuring Force

A television camera weighing 120 pounds is supported by a tripod, as shown in Figure
11.23. Represent the force exerted on each leg of the tripod as a vector. 

Solution Let the vectors and represent the forces exerted on the three legs.
From Figure 11.23, you can determine the directions of and to be as
follows.

Because each leg has the same length, and the total force is distributed equally among
the three legs, you know that So, there exists a constant such
that

and

Let the total force exerted by the object be given by Then, using
the fact that 

you can conclude that and all have a vertical component of This
implies that and Therefore, the forces exerted on the legs can
be represented by

■F3 � ��5�3, 5, �40	.

F2 � �5�3, 5, �40	
F1 � �0, �10, �40	

c � 10.c��4� � �40
�40.F3F1, F2,

F � F1 � F2 � F3

F � �0, 0, �120	.

F3 � c
�
�3
2

, 
1
2

, �4�.F2 � c
�3
2

, 
1
2

, �4�,F1 � c�0, �1, �4	,

c�F1 � � �F2 � � �F3 �.

PQ
\

3 � 
�
�3
2

� 0, 
1
2

� 0, 0 � 4� � 
�
�3
2

, 
1
2

, �4�
PQ

\

2 � 
�3
2

� 0, 
1
2

� 0, 0 � 4� � 
�3
2

, 
1
2

, �4�
PQ

\

1 � �0 � 0, �1 � 0, 0 � 4	 � �0, �1, �4	

F3F1, F2,
F3F1, F2,

Q is �5, 2, 8�.q3 � 8.q2 � 2,q1 � 5,
q3 � 5 � 3.q2 � 3 � �1,q1 � ��2� � 7,
v � PQ

\

� 7i � j � 3k.Q�q1, q2, q3�

v � 4i � 5k � �4, 0, �5	.

j

P��2, 3, 5�.
v � 7i � j � 3k,

v � 4i � 5k

11.2 Space Coordinates and Vectors in Space 779

x

y

P (0, 0, 4)

Q1 (0, −1, 0)

Q2
3

2
1
2

, )) , 0

z

Q3
3

2
1
2

, )) , 0−

Figure 11.23
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In Exercises 1 and 2, approximate the coordinates of the points.

1. 2.

In Exercises 3–6, plot the points on the same three-dimensional
coordinate system.

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

In Exercises 7–10, find the coordinates of the point.

7. The point is located three units behind the plane, four units
to the right of the plane, and five units above the plane.

8. The point is located seven units in front of the plane, two
units to the left of the plane, and one unit below the plane.

9. The point is located on the axis, 12 units in front of the 
plane.

10. The point is located in the plane, three units to the right of
the plane, and two units above the plane.

11. Think About It What is the coordinate of any point in the
plane?

12. Think About It What is the coordinate of any point in the
plane?

In Exercises 13–24, determine the location of a point 
that satisfies the condition(s).

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, find the distance between the points.

25.

26.

27.

28.

In Exercises 29–32, find the lengths of the sides of the triangle
with the indicated vertices, and determine whether the triangle
is a right triangle, an isosceles triangle, or neither.

29.

30.

31.

32.

33. Think About It The triangle in Exercise 29 is translated 
five units upward along the axis. Determine the coordinates of
the translated triangle.

34. Think About It The triangle in Exercise 30 is translated 
three units to the right along the axis. Determine the coordi-
nates of the translated triangle.

In Exercises 35 and 36, find the coordinates of the midpoint of
the line segment joining the points.

35. 36.

In Exercises 37– 40, find the standard equation of the sphere.

37. Center: 38. Center:

Radius: 2 Radius: 5

39. Endpoints of a diameter:

40. Center: tangent to the plane

In Exercises 41– 44, complete the square to write the equation of
the sphere in standard form. Find the center and radius.

41.

42.

43.

44.

In Exercises 45–48, describe the solid satisfying the condition.

45. 46.

47.

48.

In Exercises 49–52, (a) find the component form of the vector v,
(b) write the vector using standard unit vector notation, and (c)
sketch the vector with its initial point at the origin.

49. 50.

x

y

(0, 5, 1)(4, 0, 3)

6
4 642

6

4

2

z

v

x

y

(2, 4, 3)

(4, 2, 1)

6

6

6

4

2

z

v

x2 � y2 � z2 > �4x � 6y � 8z � 13

x2 � y2 � z2 < 4x � 6y � 8z � 13

x2 � y2 � z2 > 4x2 � y2 � z2 � 36

4x2 � 4y 2 � 4z2 � 24x � 4y � 8z � 23 � 0

9x2 � 9y 2 � 9z2 � 6x � 18y � 1 � 0

x2 � y2 � z2 � 9x � 2y � 10z � 19 � 0

x2 � y 2 � z2 � 2x � 6y � 8z � 1 � 0

yz-��3, 2, 4�,
�2, 0, 0�, �0, 6, 0�

�4, �1, 1��0, 2, 5�

�4, 0, �6�, �8, 8, 20��5, �9, 7�, ��2, 3, 3�

y-

z-

�4, �1, �1�, �2, 0, �4�, �3, 5, �1�
��1, 0, �2�, ��1, 5, 2�, ��3, �1, 1�
�3, 4, 1�, �0, 6, 2�, �3, 5, 6�
�0, 0, 4�, �2, 6, 7�, �6, 4, �8�

�4, �5, 6��2, 2, 3�,
�6, �2, �2��1, �2, 4�,
�2, �5, �2���2, 3, 2�,

��4, 2, 7��0, 0, 0�,

xyz > 0xyz < 0

z � 4xy < 0,z � �3xy > 0,
�x� > 4�y� � 3

x > 0y < 0

z � �
5
2x � �3

y � 2z � 6


x, y, z�

yz-
x-

xy-
z-

xy-xz-
yz-

yz-
x-

xy-xz-
yz-

xy-xz-
yz-

�4, 0, 5��0, 4, �5�
�5, �2, �2��5, �2, 2�
�3

2, 4, �2��3, �2, 5�
��1, 2, 1��2, 1, 3�

x

y

B

A 21

−2

−2
−3

−4

5

4

3

2

z

x

y4

−2

4
3

2

5

3
B

A

z
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11.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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51. 52.

In Exercises 53–56, find the component form and magnitude of
the vector with the given initial and terminal points. Then find
a unit vector in the direction of 

53.

54.

55.

56.

In Exercises 57 and 58, the initial and terminal points of a
vector v are given. (a) Sketch the directed line segment, (b) find
the component form of the vector, (c) write the vector using
standard unit vector notation, and (d) sketch the vector with its
initial point at the origin.

57. Initial point: 58. Initial point:

Terminal point: Terminal point:

In Exercises 59 and 60, the vector and its initial point are
given. Find the terminal point.

59. 60.

Initial point: Initial point:

In Exercises 61 and 62, find each scalar multiple of and sketch
its graph.

61. 62.

(a) (b) (a) (b)

(c) (d) (c) (d)

In Exercises 63– 68, find the vector given that 
and 

63. 64.

65. 66.

67. 68.

In Exercises 69–72, determine which of the vectors is (are)
parallel to Use a graphing utility to confirm your results.

69. 70.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

71. has initial point and terminal point 

(a) (b)

72. has initial point and terminal point 

(a) (b)

In Exercises 73–76, use vectors to determine whether the points
are collinear.

73.

74.

75.

76.

In Exercises 77 and 78, use vectors to show that the points form
the vertices of a parallelogram.

77.

78.

In Exercises 79–84, find the magnitude of 

79. 80.

81. 82.

83. 84.

In Exercises 85– 88, find a unit vector (a) in the direction of v
and (b) in the direction opposite of v.

85. 86.

87. 88.

89. Programming You are given the component forms of the
vectors and Write a program for a graphing utility in which
the output is (a) the component form of (b) 
(c) and (d) (e) Run the program for the vectors

and 

In Exercises 91 and 92, determine the values of that satisfy the
equation. Let and 

91. 92.

In Exercises 93–96, find the vector with the given magnitude
and direction 

93. 10

94. 3

95.

96. 7 u � ��4, 6, 2	
u � �2, �2, 1	3

2

u � �1, 1, 1	
u � �0, 3, 3	
Direction         Magnitude

u.
v

�cu � � 4�cv � � 7

v � 2i 1 2j � k.u � �i 1 2j 1 3k
c

v � �5, 4.5, �6	.u � ��1, 3, 4	
�v �.�u �,

�u � v �,u � v,
v.u

v � �8, 0, 0	v � �3, 2, �5	
v � �6, 0, 8	v � �2, �1, 2	

v � �4i � 3j � 7kv � i � 2j � 3k

v � 2i � 5j � kv � 3j � 5k

v � �1, 0, 3	v � �0, 0, 0	

v.

�1, 1, 3�, �9, �1, �2�, �11, 2, �9�, �3, 4, �4�
�2, 9, 1�, �3, 11, 4�, �0, 10, 2�, �1, 12, 5�

�0, 0, 0�, �1, 3, �2�, �2, �6, 4�
�1, 2, 4�, �2, 5, 0�, �0, 1, 5�
�4, �2, 7�, ��2, 0, 3�, �7, �3, 9�
�0, �2, �5�, �3, 4, 4�, �2, 2, 1�

�14, 16, �6	�7, 6, 2	
��2, �4, 4�.�5, 4, 1�z

4j � 2k�6i � 8j � 4k

��2, 3, 5�.�1, �1, 3�z

3
4i � j �

9
8k�1, �4, 2	

12i � 9k�6, 4, 10	
�i �

4
3j �

3
2k�2, 43, �10

3 	
6i � 4j � 9k��6, �4, 10	

z �
1
2i �

2
3j �

3
4kz � �3, 2, �5	

z.

2u � v � w � 3z � 02z � 3u � w

z � 5u � 3v �
1
2wz � 2u � 4v � w

z � u � v � 2wz � u � v

w � �4, 0, �4	.v � �2, 2, �1	,
u � �1, 2, 3	,z,

5
2v1

2v0v3
2v

2v�v�v2v

v � �2, �2, 1	v � �1, 2, 2	

v

�0, 2, 52��0, 6, 2�
v � �1, �2

3, 12	v � �3, �5, 6	

v

��4, 3, 7��3, 3, 4�
�2, �1, �2���1, 2, 3�

�2, 4, �2��1, �2, 4�
��5, 3, 0���4, 3, 1�
��1, 7, �3��4, �5, 2�
�4, 1, 6��3, 2, 0�
Terminal PointInitial Point

v.
v

x

y

(2, 3, 0)

(2, 3, 4)

6
4

2
64

6

4

2

z

v

x

y

(0, 3, 3)

(3, 3, 0)6
4

2
64

6

4

2

z

v
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90. Consider the two nonzero vectors and and let and be
real numbers. Describe the geometric figure generated by
the terminal points of the three vectors and
su � tv.

u � tv,tv,

tsv,u

CAPSTONE
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In Exercises 97 and 98, sketch the vector and write its compo-
nent form.

97. lies in the plane, has magnitude 2, and makes an angle of
with the positive axis.

98. lies in the plane, has magnitude 5, and makes an angle of
with the positive axis.

In Exercises 99 and 100, use vectors to find the point that lies
two-thirds of the way from to 

99. 100.

101. Let and 

(a) Sketch and 

(b) If show that and must both be zero.

(c) Find and such that 

(d) Show that no choice of and yields 

102. Writing The initial and terminal points of the vector are
and Describe the set of all points 

such that 

107. Let and be vertices of a triangle. Find 

108. Let and Describe the set of all
points such that 

109. Numerical, Graphical, and Analytic Analysis The lights in
an auditorium are 24-pound discs of radius 18 inches. Each
disc is supported by three equally spaced cables that are 
inches long (see figure).

(a) Write the tension in each cable as a function of 
Determine the domain of the function.

(b) Use a graphing utility and the function in part (a) to
complete the table.

(c) Use a graphing utility to graph the function in part (a).
Determine the asymptotes of the graph.

(d) Confirm the asymptotes of the graph in part (c) analytically.

(e) Determine the minimum length of each cable if a cable is
designed to carry a maximum load of 10 pounds.

110. Think About It Suppose the length of each cable in Exercise
109 has a fixed length and the radius of each disc is 
inches. Make a conjecture about the limit and give a
reason for your answer.

111. Diagonal of a Cube Find the component form of the unit
vector in the direction of the diagonal of the cube shown in
the figure.

Figure for 111 Figure for 112

112. Tower Guy Wire The guy wire supporting a 100-foot tower
has a tension of 550 pounds. Using the distances shown in the
figure, write the component form of the vector representing
the tension in the wire.

113. Load Supports Find the tension in each of the supporting
cables in the figure if the weight of the crate is 500 newtons.

Figure for 113 Figure for 114

114. Construction A precast concrete wall is temporarily kept in
its vertical position by ropes (see figure). Find the total force
exerted on the pin at position The tensions in and 
are 420 pounds and 650 pounds.

115. Write an equation whose graph consists of the set of points
that are twice as far from as from

B�1, 2, 0�.
A�0, �1, 1�P�x, y, z�

ACABA.

6 ft

A

C

D

10 ft

B

18 ft

8 ft

x
y

z

A

B

C

D

60 cm

70 cm45 cm

65 cm

115 cm

F

100

z

−50

75
x

yy

x

v

⏐⏐ v⏐⏐ = 1

z

v

lim
r0→a� T

r0L � a,

L.
T

18 in.

L

L

�r � r0� � 2.�x, y, z�
r0 � �1, 1, 1	.r � �x, y, z	

AB
\

� BC
\

� CA
\

.CB,A,

�v� � 4.
�x, y, z��x, y, z�.�x1, y1, z1�

v

w � i � 2j � 3k.ba

w � i � 2j � k.ba

baw � 0,

v.u

w � au � bv.u � i � j, v � j � k,

Q�6, 8, 2�P�1, 2, 5�,Q�1, �3, 3�P�4, 3, 0�,

Q.P

z-45�
xz-v

y-30�
yz-v

v
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103. A point in the three-dimensional coordinate system has
coordinates Describe what each coordinate
measures.

104. Give the formula for the distance between the points
and 

105. Give the standard equation of a sphere of radius 
centered at 

106. State the definition of parallel vectors.

�x0, y0, z0�.
r,

�x2, y2, z2�.�x1, y1, z1�

�x0, y0, z0�.

WRITING ABOUT CONCEPTS

L 20 25 30 35 40 45 50

T
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11.3 The Dot Product of Two Vectors 783

11.3 The Dot Product of Two Vectors
■ Use properties of the dot product of two vectors.
■ Find the angle between two vectors using the dot product.
■ Find the direction cosines of a vector in space.
■ Find the projection of a vector onto another vector.
■ Use vectors to find the work done by a constant force.

The Dot Product
So far you have studied two operations with vectors—vector addition and multiplication
by a scalar—each of which yields another vector. In this section you will study a third
vector operation, called the dot product. This product yields a scalar, rather than a
vector.

DEFINITION OF DOT PRODUCT

The dot product of and is

The dot product of and is

u � v � u1v1 � u2v2 � u3v3.

v � �v1, v2, v3�u � �u1, u2, u3�

u � v � u1v1 � u2v2.

v � �v1, v2�u � �u1, u2�

NOTE Because the dot product of two vectors yields a scalar, it is also called the scalar
product (or inner product) of the two vectors. ■

PROOF To prove the first property, let and Then

For the fifth property, let Then

Proofs of the other properties are left to you. ■

 � �v �2.

 � ��v1
2 � v2

2 � v3
2 �2

 v � v � v1
2 � v2

2 � v3
2

v � �v1, v2, v3�.

 � v � u.

 � v1u1 � v2u2 � v3u3

 u � v � u1v1 � u2v2 � u3v3

v � �v1, v2, v3�.u � �u1, u2, u3�

THEOREM 11.4 PROPERTIES OF THE DOT PRODUCT

Let and be vectors in the plane or in space and let be a scalar.

1. Commutative Property

2. Distributive Property

3.

4.

5. v � v � �v �2

0 � v � 0

c�u � v� � cu � v � u � cv

u � �v � w� � u � v � u � w

u � v � v � u

cwv,u,

E X P L O R A T I O N

Interpreting a Dot Product
Several vectors are shown below
on the unit circle. Find the dot
products of several pairs of 
vectors. Then find the angle
between each pair that you used.
Make a conjecture about the 
relationship between the dot 
product of two vectors and the
angle between the vectors.

0°

30°

60°120°

150°

180°

210°

240°
270°

300°

330°

90°
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EXAMPLE 1 Finding Dot Products

Given and find each of the following.

a. b.

c. d.

Solution

a.

b.

c. Theorem 11.4

d. Theorem 11.4

Substitute for 

Definition of dot product

Simplify.

Notice that the result of part (b) is a vector quantity, whereas the results of the other
three parts are scalar quantities. ■

Angle Between Two Vectors
The angle between two nonzero vectors is the angle between their
respective standard position vectors, as shown in Figure 11.24. The next theorem
shows how to find this angle using the dot product. (Note that the angle between the
zero vector and another vector is not defined here.)

0 � � � �,�,

 � 25

 � ��4���4� � �3��3�
w.��4, 3� � ��4, 3� � ��4, 3�

�w�2 � w � w

u � �2v� � 2�u � v� � 2��6� � �12

�u � v�w � �6��4, 3� � �24, �18�
u � v � �2, �2� � �5, 8� � 2�5� � ��2��8� � �6

�w�2u � �2v�

�u � v�wu � v

w � ��4, 3�,v � �5, 8�,u � �2, �2�,
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Origin

u
v

θ

v − u

The angle between two vectors
Figure 11.24

THEOREM 11.5 ANGLE BETWEEN TWO VECTORS

If is the angle between two nonzero vectors and then

cos � �
u � v

�u� �v �
.

v,u�

PROOF Consider the triangle determined by vectors and as shown in
Figure 11.24. By the Law of Cosines, you can write

Using the properties of the dot product, the left side can be rewritten as

and substitution back into the Law of Cosines yields

■ cos � �
u � v

�u � �v �
.

 �2u � v � �2�u� �v � cos �

 �v �2 � 2u � v � �u�2 � �u�2 � �v �2 � 2 �u� �v � cos �

 � �v �2 � 2u � v � �u�2

 � v � v � u � v � v � u � u � u

 � �v � u� � v � �v � u� � u

 �v � u�2 � �v � u� � �v � u�

�v � u�2 � �u�2 � �v �2 � 2�u� �v � cos �.

v � u,v,u,

1053714_1103.qxp  10/27/08  10:38 AM  Page 784

Copyright 2010 Cengage Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

Licensed to:



If the angle between two vectors is known, rewriting Theorem 11.5 in the form

produces an alternative way to calculate the dot product. From this form, you can see
that because and are always positive, and will always have the
same sign. Figure 11.25 shows the possible orientations of two vectors.

Figure 11.25

From Theorem 11.5, you can see that two nonzero vectors meet at a right angle
if and only if their dot product is zero. Two such vectors are said to be orthogonal.

From this definition, it follows that the zero vector is orthogonal to every vector
because Moreover, for you know that if and only

if So, you can use Theorem 11.5 to conclude that two nonzero vectors are
orthogonal if and only if the angle between them is 

EXAMPLE 2 Finding the Angle Between Two Vectors

For and find the
angle between each pair of vectors.

a. and b. and c. and 

Solution

a.

Because radians.

b.

Because and are orthogonal. So,

c.

Consequently, Note that and are parallel, with ■v � �2z.zv� � �.

cos � �
v � z

�v � �z�
�

�8 � 0 � 2
�20�5

�
�10
�100

� �1

� � ��2.wuu � w � 0,

cos � �
u � w

�u� �w �
�

3 � 1 � 4
�14�6

�
0

�84
� 0

� � arccos 
�4
�70

	 2.069u � v < 0,

cos � �
u � v

�u� �v �
�

�12 � 0 � 4
�14�20

�
�8

2�14�5
�

�4
�70

zvwuvu

z � �2, 0, �1�,w � �1, �1, �2�,v � ��4, 0, 2�,u � �3, �1, 2�,

��2.
� � ��2.

cos � � 00 � � � �,0 � u � 0.u,

cos � � 10 < cos � < 1cos � � 0�1 < cos � < 0cos � � �1
� � 00 < � < ��2� � ��2��2 < � < �� � �

u
v

Same
direction

θ
u

v

u   v > 0

θ
u

v

u   v = 0

θu

v

u   v < 0

θ

u v

Opposite
direction

cos �u � v�v ��u �

11.3 The Dot Product of Two Vectors 785

Alternative form of dot productu � v � �u� �v � cos �

DEFINITION OF ORTHOGONAL VECTORS

The vectors and are orthogonal if u � v � 0.vu

NOTE The terms “perpendicular,” “orthogonal,” and “normal” all mean essentially the same
thing—meeting at right angles. However, it is common to say that two vectors are orthogonal,
two lines or planes are perpendicular, and a vector is normal to a given line or plane. ■
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Direction Cosines
For a vector in the plane, you have seen that it is convenient to measure direction in
terms of the angle, measured counterclockwise, the positive axis the vector.
In space it is more convenient to measure direction in terms of the angles the
nonzero vector and the three unit vectors and as shown in Figure 11.26. The
angles and are the direction angles of and and are the
direction cosines of Because

and

it follows that By similar reasoning with the unit vectors and you
have

is the angle between and 

is the angle between and 

is the angle between and 

Consequently, any nonzero vector in space has the normalized form

and because is a unit vector, it follows that

EXAMPLE 3 Finding Direction Angles

Find the direction cosines and angles for the vector and show that

Solution Because you can write the following.

Angle between and 

Angle between and 

Angle between and 

Furthermore, the sum of the squares of the direction cosines is

See Figure 11.27. ■

 � 1.

 �
29
29

 cos2 	 � cos2 
 � cos2 � �
4

29
�

9
29

�
16
29

kv� 	 42.0�cos � �
v3

�v �
�

4
�29

jv
 	 56.1�cos 
 �
v2

�v �
�

3
�29

iv	 	 68.2�cos 	 �
v1

�v �
�

2
�29

�v � � �22 � 32 � 42 � �29,

cos2 	 � cos2 
 � cos2 � � 1.
v � 2i � 3j � 4k,

cos2 	 � cos2 
 � cos2 � � 1.

v��v �

v
�v�

�
v1

�v �
i �

v2

�v �
j �

v3

�v �
k � cos 	 i � cos 
 j � cos � k

v

k.v�cos � �
v3

�v �
.

j.v
cos 
 �
v2

�v �

i.v	cos 	 �
v1

�v �

k,jcos 	 � v1��v �.

v � i � �v1, v2, v3� � �1, 0, 0� � v1

v � i � �v � � i � cos 	 � �v � cos 	

v.
cos �cos 
,cos 	 ,v,�	, 
,

k,j,i,v
between

tox-from
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x

y

v

j

k

i

γ

β
α

z

Direction angles
Figure 11.26

z

x y

4
3

2
1

4
3

1
2

4

3

2

1

γ

βα

γ
β = angle between v and j

= angle between v and k

v = 2i + 3j + 4k

α = angle between v and i

The direction angles of v
Figure 11.27
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Projections and Vector Components
You have already seen applications in which two vectors are added to produce a
resultant vector. Many applications in physics and engineering pose the reverse
problem—decomposing a given vector into the sum of two vector components. The
following physical example enables you to see the usefulness of this procedure.

Consider a boat on an inclined ramp, as shown in Figure 11.28. The force due
to gravity pulls the boat the ramp and the ramp. These two forces,
and are orthogonal—they are called the vector components of 

Vector components of 

The forces and help you analyze the effect of gravity on the boat. For example,
indicates the force necessary to keep the boat from rolling down the ramp, whereas
indicates the force that the tires must withstand.

projection of u onto v vector component of u along v
vector component of u orthogonal to v

Figure 11.29

EXAMPLE 4 Finding a Vector Component of u Orthogonal to v

Find the vector component of that is orthogonal to given that
and

Solution Because where is parallel to it follows that is the
vector component of orthogonal to So, you have

Check to see that is orthogonal to as shown in Figure 11.30. ■v,w2

 � ��3, 4�.
 � �5, 10� � �8, 6�

w2 � u � w1

v.u
w2v,w1u � w1 � w2,

u � �5, 10� � w1 � w2.

w1 � projvu � �8, 6�
v � �4, 3�,u � �5, 10�

w2 �
�w1 � projvu �

θ

w1

w2
u

v

is obtuse.θ

θ

w1

w2
u

v

is acute.θ

w2

w1

w2w1

FF � w1 � w2

F.w2,
w1againstdown

F

11.3 The Dot Product of Two Vectors 787

DEFINITIONS OF PROJECTION AND VECTOR COMPONENTS

Let and be nonzero vectors. Moreover, let where is
parallel to , and is orthogonal to as shown in Figure 11.29.

1. is called the projection of onto or the vector component of along
and is denoted by 

2. is called the vector component of orthogonal to v.uw2 � u � w1

w1 � projvu.v,
uvuw1

v,w2v
w1u � w1 � w2,vu

F
w2

w1

The force due to gravity pulls the boat
against the ramp and down the ramp.
Figure 11.28

x

w1w2

u

v

(−3, 4)

(8, 6)

(4, 3)

(5, 10)

−2−4 2 4 6 8

−2

2

4

8

10

y

Figure 11.30
u � w1 � w2
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From Example 4, you can see that it is easy to find the vector component once
you have found the projection, of onto To find this projection, use the dot
product given in the theorem below, which you will prove in Exercise 92.

The projection of onto can be written as a scalar multiple of a unit vector in
the direction of That is,

The scalar is called the component of in the direction of 

EXAMPLE 5 Decomposing a Vector into Vector Components

Find the projection of onto and the vector component of orthogonal to for the
vectors and shown in Figure 11.31.

Solution The projection of onto is

The vector component of orthogonal to is the vector

EXAMPLE 6 Finding a Force

A 600-pound boat sits on a ramp inclined at as shown in Figure 11.32. What force
is required to keep the boat from rolling down the ramp?

Solution Because the force due to gravity is vertical and downward, you can
represent the gravitational force by the vector To find the force required
to keep the boat from rolling down the ramp, project onto a unit vector in the
direction of the ramp, as follows.

Unit vector along ramp

Therefore, the projection of onto is given by

The magnitude of this force is 300, and therefore a force of 300 pounds is required to
keep the boat from rolling down the ramp. ■

w1 � projvF � 
F � v
�v �2 �v � �F � v�v � ��600�
1

2�v � �300
�3
2

i �
1
2

j�.

vF

v � cos 30� i � sin 30�j �
�3
2

i �
1
2

j

vF
F � �600j.

30�,

w2 � u � w1 � �3i � 5j � 2k� � 
14
9

i �
2
9

j �
4
9

k� �
13
9

i �
47
9

j �
22
9

k.

vu

w1 � 
u � v
�v �2 �v � 
12

54��7i � j � 2k� �
14
9

i �
2
9

j �
4
9

k.

vu

v � 7i � j � 2ku � 3i � 5j � 2k
vuvu

v.uk

k �
u � v
�v �

� �u � cos �.
u � v
�v �2 �v � 
u � v

�v � � 
v

�v �
� �k� v

�v �

v.
vu

v.uw1,
w2
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THEOREM 11.6 PROJECTION USING THE DOT PRODUCT

If and are nonzero vectors, then the projection of onto is given by

projvu � 
u � v
�v �2 �v.

vuvu

8

6

2

4

2

−2

−4

y

x

w1

w2

u

v

u = 3i − 5j + 2k
v = 7i + j − 2k

z

Figure 11.31
u � w1 � w2

F

w1 = projv(F)

v

30°

w1

Figure 11.32

NOTE Note the distinction between
the terms “component” and “vector com-
ponent.” For example, using the standard
unit vectors with is
the component of in the direction of 
and is the vector component in the
direction of i.

u1i
iu

u1u � u1i � u2 j,
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Work
The work W done by the constant force acting along the line of motion of an object
is given by

as shown in Figure 11.33(a). If the constant force is not directed along the line of
motion, you can see from Figure 11.33(b) that the work W done by the force is

This notion of work is summarized in the following definition.

EXAMPLE 7 Finding Work

To close a sliding door, a person pulls on a rope with a constant force of 50 pounds at
a constant angle of as shown in Figure 11.34. Find the work done in moving the
door 12 feet to its closed position.

Solution Using a projection, you can calculate the work as follows.

Projection form for work

■ � 300 foot-pounds

 �
1
2

�50��12�

 � cos�60�� �F � � PQ
\

�
 W � �projPQ

\ F � �PQ
\

�

60�,

W � �projPQ
\F � � PQ

\

� � �cos ���F� � PQ
\

� � F � PQ
\

.

F

W � �magnitude of force��distance� � �F � � PQ
\

�

F

11.3 The Dot Product of Two Vectors 789

In Exercises 1–8, find (a) (b) (c) (d) 
and (e) 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9 and 10, find 

9. and the angle between and is 

10. and the angle between and is 

In Exercises 11–18, find the angle between the vectors.

11. 12.

13.

14.

15. 16.

17. 18.

In Exercises 19–26, determine whether and are orthogonal,
parallel, or neither.

19.

20. v � � 3
2, �1

6�u � �2, 18�,
v � �1, 1�u � �4, 0�,

vu

v � i � 2j � kv � �2j � 3k

u � 2i � 3j � ku � 3i � 4j

v � 2i � 3jv � �2, 1, �1�
u � 3i � 2j � ku � �1, 1, 1�

v � cos
3�

4 � i � sin
3�

4 � j

u � cos
�

6� i � sin
�

6� j

v � �2i � 4ju � 3i � j,

v � �2, �1�u � �3, 1�,v � �2, �2�u � �1, 1�,

�

5��6.vu�v � � 25,�u � � 40,

��3.vu�v � � 5,�u � � 8,

u � v.

v � i � 3j � 2kv � i � k

u � 2i � j � 2ku � 2i � j � k

v � iu � i,v � �0, 6, 5�u � �2, �3, 4�,
v � �7, 5�u � ��4, 8�,v � ��3, 2�u � �6, �4�,

v � ��2, 3�u � �4, 10�,v � ��1, 5�u � �3, 4�,

u � �2v
.
�u � v
v,�u �2,u � u,u � v,

11.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

DEFINITION OF WORK

The work done by a constant force as its point of application moves
along the vector is given by either of the following.

1. Projection form

2. Dot product formW � F � PQ
\

 W � �projPQ
\ F � �PQ

\

�

PQ
\

FW

P Q

12 ft

12 ft

F

60°

projPQF

Figure 11.34

Work = ⎜⎜F⎜⎜⎜⎜PQ⎜⎜

F

P Q

(a) Force acts along the line of motion.

projPQ F

F

P Q

θ

Work = ⎜⎜projPQ F⎜⎜⎜⎜PQ⎜⎜

(b) Force acts at angle with the line of motion.
Figure 11.33

�
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21. 22.

23. 24.

25. 26.

In Exercises 27–30, the vertices of a triangle are given.
Determine whether the triangle is an acute triangle, an obtuse
triangle, or a right triangle. Explain your reasoning.

27.

28.

29.

30.

In Exercises 31–34, find the direction cosines of and demon-
strate that the sum of the squares of the direction cosines is 1.

31.

32.

33.

34.

In Exercises 35–38, find the direction angles of the vector.

35. 36.

37. 38.

In Exercises 39 and 40, use a graphing utility to find the
magnitude and direction angles of the resultant of forces and

with initial points at the origin. The magnitude and terminal
point of each vector are given.

39. 50 lb

80 lb

40. 300 N

100 N

41. Load-Supporting Cables A load is supported by three cables,
as shown in the figure. Find the direction angles of the load-
supporting cable 

42. Load-Supporting Cables The tension in the cable in
Exercise 41 is 200 newtons. Determine the weight of the load. 

In Exercises 43–50, (a) find the projection of onto and (b)
find the vector component of orthogonal to 

43.

44.

45.

46.

47.

48.

49.

50.

59. Revenue The vector gives the
numbers of hamburgers, chicken sandwiches, and cheeseburgers,
respectively, sold at a fast-food restaurant in one week. The
vector gives the prices (in dollars) per unit
for the three food items. Find the dot product and explain
what information it gives.

60. Revenue Repeat Exercise 59 after increasing prices by 4%.
Identify the vector operation used to increase prices by 4%.

61. Programming Given vectors and in component form,
write a program for a graphing utility in which the output is 
(a) (b) and (c) the angle between and 

62. Programming Use the program you wrote in Exercise 61 to
find the angle between the vectors and
v � �2, 5, 2�.

u � �8, �4, 2�

v.u�v �,�u �,

vu

u � v,
�1.35, 2.65, 1.85�v �

u � �3240, 1450, 2235�

v � 3i � 2ku � i � 4k,

v � 3j � 4ku � 2i � j � 2k,

v � �2, 1, �1�u � �8, 2, 0�,
v � ��1, 1, 1�u � �0, 3, 3�,
v � 3i � 2ju � 2i � 3j,

v � 5i � ju � 2i � 3j,

v � �1, 3�u � �9, 7�,
v � �1, 4�u � �6, 7�,

v.u
v,u

OA

x

y

C

O

B

A
(0, 10, 10)

(−4, −6, 10)

(4, −6, 10)

300 lb

z

OA.

�5, 15, 0�F2

��20, �10, 5�F1

�12, 7, �5�F2

�10, 5, 3�F1

Terminal PointMagnitudeVector

F2

F1

u � ��2, 6, 1�u � ��1, 5, 2�
u � �4i � 3j � 5ku � 3i � 2j � 2k

u � �a, b, c�
u � �0, 6, �4�
u � 5i � 3j � k

u � i � 2j � 2k

u

�2, �7, 3�, ��1, 5, 8�, �4, 6, �1�
�2, 0, 1�, �0, 1, 2), ��0.5, 1.5, 0�
��3, 0, 0�, �0, 0, 0�, �1, 2, 3�
�1, 2, 0�, �0, 0, 0�, ��2, 1, 0�

v � �sin �, �cos �, 0�v � ��1, �1, �1�
u � �cos �, sin �, �1�u � �2, �3, 1�
v � 2i � j � kv � i � 2j � k

u � �2i � 3j � ku � j � 6k

v � 2i � 4jv � � 1
2, �2

3�
u � �

1
3�i � 2j�u � �4, 3�

790 Chapter 11 Vectors and the Geometry of Space

51. Define the dot product of vectors and 

52. State the definition of orthogonal vectors. If vectors are
neither parallel nor orthogonal, how do you find the angle
between them? Explain.

53. Determine which of the following are defined for nonzero
vectors and Explain your reasoning.

(a) (b)

(c) (d)

54. Describe direction cosines and direction angles of a vector 

55. Give a geometric description of the projection of onto 

56. What can be said about the vectors and if (a) the
projection of onto equals and (b) the projection of 
onto equals 

57. If the projection of onto has the same magnitude as the
projection of onto can you conclude that 
Explain.

�u� � �v �?u,v
vu

0?v
uuvu

vu

v.u

v.

�u� � �v � w�u � v � w

�u � v�wu � �v � w�
w.v,u,

v.u

WRITING ABOUT CONCEPTS

58. What is known about the angle between two nonzero
vectors and if

(a) (b) (c) u � v < 0?u � v > 0?u � v � 0?

v,u
�,

CAPSTONE
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63. Programming Given vectors and in component form,
write a program for a graphing utility in which the output is the
component form of the projection of onto 

64. Programming Use the program you wrote in Exercise 63 to
find the projection of onto for and

Think About It In Exercises 65 and 66, use the figure to
determine mentally the projection of onto (The coordinates
of the terminal points of the vectors in standard position are
given.) Verify your results analytically.

65. 66.

In Exercises 67–70, find two vectors in opposite directions that
are orthogonal to the vector (The answers are not unique.)

67. 68.

69. 70.

71. Braking Load A 48,000-pound truck is parked on a slope
(see figure). Assume the only force to overcome is that due to
gravity. Find (a) the force required to keep the truck from
rolling down the hill and (b) the force perpendicular to the hill.

Figure for 71 Figure for 72

72. Load-Supporting Cables Find the magnitude of the projection
of the load-supporting cable onto the positive axis as
shown in the figure.

73. Work An object is pulled 10 feet across a floor, using a force
of 85 pounds. The direction of the force is above the
horizontal (see figure). Find the work done.

Figure for 73 Figure for 74

74. Work A toy wagon is pulled by exerting a force of 25 pounds
on a handle that makes a angle with the horizontal (see 
figure in left column). Find the work done in pulling the wagon
50 feet.

75. Work A car is towed using a force of 1600 newtons. The
chain used to pull the car makes a angle with the horizontal.
Find the work done in towing the car 2 kilometers.

76. Work A sled is pulled by exerting a force of 100 newtons on
a rope that makes a angle with the horizontal. Find the work
done in pulling the sled 40 meters.

True or False? In Exercises 77 and 78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

77. If and then 

78. If and are orthogonal to then is orthogonal to 

79. Find the angle between a cube’s diagonal and one of its edges.

80. Find the angle between the diagonal of a cube and the diagonal
of one of its sides.

In Exercises 81–84, (a) find all points of intersection of the
graphs of the two equations, (b) find the unit tangent vectors to
each curve at their points of intersection, and (c) find the angles

between the curves at their points of intersection.

81.

82.

83.

84.

85. Use vectors to prove that the diagonals of a rhombus are
perpendicular.

86. Use vectors to prove that a parallelogram is a rectangle if and
only if its diagonals are equal in length.

87. Bond Angle Consider a regular tetrahedron with vertices
and where is a positive

real number.

(a) Sketch the graph of the tetrahedron.

(b) Find the length of each edge.

(c) Find the angle between any two edges.

(d) Find the angle between the line segments from the centroid
to two vertices. This is the bond angle for a

molecule such as or where the structure of the
molecule is a tetrahedron.

88. Consider the vectors and
where Find the dot product of the

vectors and use the result to prove the identity

89. Prove that 

90. Prove the Cauchy-Schwarz Inequality

91. Prove the triangle inequality 

92. Prove Theorem 11.6.

�u � v � � �u � � �v �.
�u � v� � �u � �v �.

�u � v�2 � �u� 2 � �v �2 � 2u � v.

cos�	 � 
� � cos 	 cos 
 � sin 	 sin 
.

	 > 
.v � �cos 
, sin 
, 0�,
u � �cos 	, sin 	, 0�

PbCl4,CH 4

�k�2, k�2, k�2�

k�0, k, k�,�k, 0, k�,�k, k, 0�,�0, 0, 0�,

y � x3 � 1� y � 1�2 � x,

y � x2 � 1y � 1 � x2,

y � x1�3y � x3,

y � x1�3y � x2,

�0� � � � 90�


w.u � vw,vu

v � w.u 
 0,u � v � u � w

25�

25�

20�

20°
60°

10 ft

85 lb

Not drawn to scale

60�

z-OA

(−5, −5, 20)

(10, 5, 20)

y

x

z

1000 kg

A

B
C

O

(5, −5, 20)

Weight = 48,000 lb

10°

10�

u � �4, �3, 6�u � �3, 1, �2�
u � 9i � 4ju � �

1
4 i �

3
2 j

u.

(4, 6)

(3, −2)u

v

x

y

−2 4 6
−2

2

4

6

−4 2 4 6

2

4

6

(−2, −3)

(4, 6)

u

v

x

y

v.u

v � ��1, 3, 4�.
u � �5, 6, 2�vu

v.u

vu
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■ Find the cross product of two vectors in space.
■ Use the triple scalar product of three vectors in space.

The Cross Product
Many applications in physics, engineering, and geometry involve finding a vector in
space that is orthogonal to two given vectors. In this section you will study a product
that will yield such a vector. It is called the cross product, and it is most conveniently
defined and calculated using the standard unit vector form. Because the cross product
yields a vector, it is also called the vector product.

A convenient way to calculate is to use the following determinant form with
cofactor expansion. (This determinant form is used simply to help remember the
formula for the cross product—it is technically not a determinant because the entries
of the corresponding matrix are not all real numbers.)

Note the minus sign in front of the component. Each of the three determinants
can be evaluated by using the following diagonal pattern.

Here are a couple of examples.

� 4
�6

0
3� � �4��3� � �0���6� � 12

�23 4
�1� � �2���1� � �4��3� � �2 � 12 � �14

�ac b
d � � ad � bc

2 � 2j-

 � �u2v3 � u3v2� i � �u1v3 � u3v1� j � �u1v2 � u2v1�k

 � � u2

v2

u3

v3 � i � � u1

v1

u3

v3 �  j � � u1

v1

u2

v2 �  k

 � � i
u1
v

1

j
u2

v2

k
u3

v3 �  i � � i
u1
v

1

j
u2

v2

k
u3

v3 �   j � � i
u1
v

1

j
u2

v2

k
u3

v3 �   k
 u � v � � i  

u1

v1

j
u2

v2

 k
u3

v3 �
3 � 3

u � v
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11.4 The Cross Product of Two Vectors in Space

DEFINITION OF CROSS PRODUCT OF TWO VECTORS IN SPACE

Let 

and

be vectors in space. The cross product of and is the vector

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k.

vu

v � v1i � v2 j � v3ku � u1i � u2 j � u3k

NOTE Be sure you see that this definition applies only to three-dimensional vectors. The
cross product is not defined for two-dimensional vectors. ■

E X P L O R A T I O N

Geometric Property of the Cross
Product Three pairs of vectors
are shown below. Use the defini-
tion to find the cross product of
each pair. Sketch all three vectors
in a three-dimensional system.
Describe any relationships among
the three vectors. Use your
description to write a conjecture
about and 

a.

b.

c.

x

y
1 2 3

2

−2
−3

3

2

1

−3

−3 −2

u

v

z

u � �3, 3, 0�, v � �3, �3, 0�

x

y
1 2 33

2
1

−2
−3

3

2

−3

−2

−3 −2

v

u

z

u � �0, 3, 3�, v � �0, �3, 3�

x

y
1 2 33

1

−2
−3

3

2

1

−3

−3
u

v

z

u � �3, 0, 3�, v � �3, 0, �3�

u � v.v,u,

Put “ ” in Row 2.u

Put “ ” in Row 3.v
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EXAMPLE 1 Finding the Cross Product

Given and find each of the following.

a. b. c.

Solution

a.

b.

Note that this result is the negative of that in part (a).

c. ■

The results obtained in Example 1 suggest some interesting properties
of the cross product. For instance, and These
properties, and several others, are summarized in the following theorem.

v � v � 0.u � v � ��v � u�,
algebraic

v � v � � i
3
3

j
1
1

k
�2
�2� � 0

 � �3i � 5 j � 7k

 � �1 � 4�i � �3 � 2�j � ��6 � 1�k

 v � u � � i
3
1

j
1

�2

k
�2

1� � � 1
�2

�2
1� i � �31 �2

1�j � �31 1
�2�k

 � 3i � 5 j � 7k

 � �4 � 1� i � ��2 � 3�j � �1 � 6�k

 u � v � � i
1
3

j
�2

1

k
1

�2� � ��2
1

1
�2� i � �13 1

�2�j � �13 �2
1�k

v � vv � uu � v

v � 3i � j � 2k,u � i � 2 j � k
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THEOREM 11.7 ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Let and be vectors in space, and let be a scalar.

1.

2.

3.

4.

5.

6. u � �v � w� � �u � v� � w

u � u � 0

u � 0 � 0 � u � 0

c�u � v� � �cu� � v � u � �cv�
u � �v � w� � �u � v� � �u � w�
u � v � ��v � u�

cwv,u,

PROOF To prove Property 1, let and 
Then,

and

which implies that Proofs of Properties 2, 3, 5, and 6 are left as
exercises (see Exercises 59–62). ■

u � v � ��v � u�.

v � u � �v2u3 � v3u2�i � �v1u 3 � v3u1�j � �v1u2 � v2u1�k

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k

v � v1i � v2 j � v3k.u � u1i � u2 j � u3k

NOTATION FOR DOT AND CROSS
PRODUCTS

The notation for the dot product and cross
product of vectors was first introduced by 
the American physicist Josiah Willard Gibbs
(1839–1903). In the early 1880s, Gibbs built
a system to represent physical quantities
called “vector analysis.”  The system was a
departure from Hamilton’s theory of quaternions.
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Note that Property 1 of Theorem 11.7 indicates that the cross product is not
commutative. In particular, this property indicates that the vectors and 
have equal lengths but opposite directions. The following theorem lists some other
geometric properties of the cross product of two vectors.

Both and are perpendicular to the plane determined by and One
way to remember the orientations of the vectors and is to compare them
with the unit vectors and as shown in Figure 11.36. The three vectors

and form a right-handed system, whereas the three vectors and 
form a left-handed system.

Right-handed systems
Figure 11.36

u × v

v

u
Plane determined
by u and v

j

i

k = i × j

xy-plane

v � uv,u,u � vv,u,
k � i � j,j,i,

u � vv,u,
v.uv � uu � v

v � uu � v
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THEOREM 11.8 GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Let and be nonzero vectors in space, and let be the angle between and 

1. is orthogonal to both and 

2.

3. if and only if and are scalar multiples of each other.

4. area of parallelogram having and as adjacent sides.vu�u � v � �

vuu � v � 0

�u � v � � �u� �v � sin �

v.uu � v

v.u�vu

PROOF To prove Property 2, note because it follows that

To prove Property 4, refer to Figure 11.35, which is a parallelogram having and 
as adjacent sides. Because the height of the parallelogram is the area is

Proofs of Properties 1 and 3 are left as exercises (see Exercises 63 and 64). ■

 � �u � v�.
 � �u� �v� sin�

 Area � �base��height�

�v� sin �,
uv

 � �u � v �.

 � ��u2v3 � u3v2)
2 � �u1v3 � u3v1�2 � �u1v2 � u2v1�2

 � ��u1
2 � u2

2 � u3
2��v1

2 � v2
2 � v3

2� � �u1v1 � u2v2 � u3v3�2

 � � �u�2 �v�2 � �u � v�2

 � �u� �v��1 �
�u � v�2

�u�2 �v�2

 �u� �v� sin� � �u� �v��1 � cos2 �

cos � � �u � v�	��u� �v��,

NOTE It follows from Properties 1
and 2 in Theorem 11.8 that if is a unit
vector orthogonal to both and then

u � v � ±� �u� �v � sin� �n.

v,u
n

u

v

θ

  ⎜⎜v⎜⎜ θsin

The vectors u and v form adjacent sides of a
parallelogram.
Figure 11.35
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EXAMPLE 2 Using the Cross Product

Find a unit vector that is orthogonal to both

and

Solution The cross product as shown in Figure 11.37, is orthogonal to both 
and 

Cross product

Because 

a unit vector orthogonal to both and is

■

EXAMPLE 3 Geometric Application of the Cross Product

Show that the quadrilateral with vertices at the following points is a parallelogram,
and find its area.

Solution From Figure 11.38 you can see that the sides of the quadrilateral corre-
spond to the following four vectors.

So, is parallel to and is parallel to , and you can conclude that the
quadrilateral is a parallelogram with and as adjacent sides. Moreover, because

Cross product

the area of the parallelogram is

Is the parallelogram a rectangle? You can determine whether it is by finding the angle
between the vectors and ■AD

\

.AB
\

� AB
\

� AD
\

� � �1036 
 32.19.

 � 26i � 18j � 6k

AB
\

� AD
\

� � i
�3

0

j
4

�2

k
1
6�

AD
\

AB
\

CB
\

AD
\

CD
\

AB
\

CB
\

� 0i � 2j � 6k � �AD
\

AD
\

� 0i � 2j � 6k

CD
\

� 3i � 4j � k � �AB
\

AB
\

� �3i � 4j � k

 D � �5, 0, 6� C � �2, 4, 7�
 B � �2, 6, 1� A � �5, 2, 0�

u � v
�u � v�

� �
3

�134
i �

2
�134

j �
11

�134
k.

vu

�u � v� � ���3�2 � 22 � 112 � �134

 � �3i � 2j � 11k

u � v � � i
1
2

j
�4

3

k
1
0�

v.
uu � v,

v � 2i � 3j.u � i � 4j � k
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x

y

2

4

6

8

10

12

2
4

4

2

−4

(−3, 2, 11)

(2, 3, 0)

(1, −4, 1)
u

v

z

u × v

The vector is orthogonal to both 
and 
Figure 11.37

v.
uu � v

y

x

6

2 4 6

8

6

2

C = (2, 4, 7)

D = (5, 0, 6)

B = (2, 6, 1)

A = (5, 2, 0)

z

The area of the parallelogram is approximately
32.19.
Figure 11.38

NOTE In Example 2, note that you could have used the cross product to form a unit
vector that is orthogonal to both and With that choice, you would have obtained the
negative of the unit vector found in the example. ■

v.u
v � u
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In physics, the cross product can be used to measure torque—the moment of
a force about a point P, as shown in Figure 11.39. If the point of application of the
force is the moment of about is given by

Moment of about 

The magnitude of the moment measures the tendency of the vector to rotate
counterclockwise (using the right-hand rule) about an axis directed along the vector 

EXAMPLE 4 An Application of the Cross Product

A vertical force of 50 pounds is applied to the end of a one-foot lever that is attached
to an axle at point as shown in Figure 11.40. Find the moment of this force about
the point when 

Solution If you represent the 50-pound force as and the lever as

the moment of about is given by

Moment of about 

The magnitude of this moment is 25 foot-pounds. ■

The Triple Scalar Product
For vectors and in space, the dot product of and 

is called the triple scalar product, as defined in Theorem 11.9. The proof of this
theorem is left as an exercise (see Exercise 67).

u � �v � w�

v � wuwv,u,

PFM � PQ
\

� F � � i

0

0

     

j

1
2
0

     

k

�3
  2  
�50� � �25i.

PF

PQ
\

� cos�60��j � sin�60��k �
1
2

j �
�3
2

k

F � �50k

� � 60�.P
P,

M.
PQ

\

M

PFM � PQ
\

� F.

PFQ,
F

M
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NOTE In Example 4, note that the moment (the tendency of the lever to rotate about its axle)
is dependent on the angle When the moment is 0. The moment is greatest when

■� � 0.
� � 		2,�.

NOTE The value of a determinant is multiplied by if two rows are interchanged. After
two such interchanges, the value of the determinant will be unchanged. So, the following triple
scalar products are equivalent.

■w � �u � v�v � �w � u� �u � �v � w� �

�1

THEOREM 11.9 THE TRIPLE SCALAR PRODUCT

For and 
the triple scalar product is given by

u � �v � w� � �u1

v1

w1

u2

v2

w2

u3

w3

v3 �.
w � w1i � w2j � w3k,u � u1i � u2 j � u3k, v � v1i � v2 j � v3k,

■ FOR FURTHER INFORMATION To
see how the cross product is used to
model the torque of the robot arm of a
space shuttle, see the article “The Long
Arm of Calculus” by Ethan Berkove 
and Rich Marchand in The College
Mathematics Journal. To view this 
article, go to the website 
www.matharticles.com.

F

M

PQ

Q

P

The moment of F about 
Figure 11.39

P

x

y

F

Q

P
60°

z

A vertical force of 50 pounds is applied at
point 
Figure 11.40

Q.
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If the vectors and do not lie in the same plane, the triple scalar product
can be used to determine the volume of the parallelepiped (a polyhedron,

all of whose faces are parallelograms) with and as adjacent edges, as shown in
Figure 11.41. This is established in the following theorem.

EXAMPLE 5 Volume by the Triple Scalar Product

Find the volume of the parallelepiped shown in Figure 11.42 having
and as adjacent edges.

Solution By Theorem 11.10, you have

Triple scalar product

■

A natural consequence of Theorem 11.10 is that the volume of the parallelepiped
is 0 if and only if the three vectors are coplanar. That is, if the vectors 

and have the same initial point, they lie in the same
plane if and only if

u � �v � w� � � u1

v1

w1

u2

v2

w2

u3

v3

w3� � 0.

w � �w1, w2, w3�v � �v1, v2, v3�,
u � �u1, u2, u3�,

 � 36.

 � 3�4� � 5�6� � 1��6�

 � 3�21 �2
1� � ��5��03 �2

1� � �1��03 2
1�

 � �303 �5
2
1

1
�2

1�
 V � �u � �v � w��

w � 3i � j � ku � 3i � 5j � k, v � 2j � 2k,

wv,u,
u � �v � w)

wv,u,

11.4 The Cross Product of Two Vectors in Space 797

THEOREM 11.10 GEOMETRIC PROPERTY OF THE TRIPLE SCALAR PRODUCT

The volume of a parallelepiped with vectors and as adjacent edges
is given by

V � �u � �v � w��.

wv,u,V

PROOF In Figure 11.41, note that

area of base

and

height of parallelepiped.

Therefore, the volume is

■ � �u � �v � w��.
 � �u � �v � w�

�v � w� ��v � w�

V � �height��area of base� � �projv�wu� �v � w�

�projv�wu� �

�v � w� �

u

w
v

⎜⎜projv × wu⎜⎜

v × w

Area of base
Volume of parallelepiped
Figure 11.41

� �u � �v � w��
� �v � w �

y

6

3

2

1
u

w
v

(0, 2, −2)

(3, −5, 1) (3, 1, 1)

x

z

The parallelepiped has a volume of 36.
Figure 11.42
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In Exercises 1–6, find the cross product of the unit vectors and
sketch your result.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, find (a) (b) and (c) 

7. 8.

9. 10.

In Exercises 11–16, find and show that it is orthogonal to
both and 

11. 12.

13. 14.

15. 16.

Think About It In Exercises 17–20, use the vectors and 
shown in the figure to sketch a vector in the direction of the
indicated cross product in a right-handed system.

17. 18.

19. 20.

In Exercises 21–24, use a computer algebra system to find 
and a unit vector orthogonal to and 

21. 22.

23. 24.

25. Programming Given the vectors and in component form,
write a program for a graphing utility in which the output is

and 

26. Programming Use the program you wrote in Exercise 25 to
find and for and 

Area In Exercises 27–30, find the area of the parallelogram
that has the given vectors as adjacent sides. Use a computer
algebra system or a graphing utility to verify your result.

27. 28.

29. 30.

Area In Exercises 31 and 32, verify that the points are the
vertices of a parallelogram, and find its area.

31.

32.

Area In Exercises 33–36, find the area of the triangle with the
given vertices. Hint: is the area of the triangle having

and as adjacent sides.
33.

34.

35.

36.

37. Torque A child applies the brakes on a bicycle by applying a
downward force of 20 pounds on the pedal when the crank
makes a angle with the horizontal (see figure). The crank is
6 inches in length. Find the torque at 

Figure for 37 Figure for 38

38. Torque Both the magnitude and the direction of the force on
a crankshaft change as the crankshaft rotates. Find the torque
on the crankshaft using the position and data shown in the figure.

39. Optimization A force of 56 pounds acts on the pipe wrench
shown in the figure on the next page.

(a) Find the magnitude of the moment about by evaluating
Use a graphing utility to graph the resulting

function of 

(b) Use the result of part (a) to determine the magnitude of the
moment when 

(c) Use the result of part (a) to determine the angle when the
magnitude of the moment is maximum. Is the answer what
you expected? Why or why not?

�

� � 45�.

�.
�OA

\

� F �.
O

0.1
6 f

t

2000 lb60°40°
P

6 in.
F = 20 lb

P.
40�

A�1, 2, 0�, B��2, 1, 0�, C�0, 0, 0�
A�2, �7, 3�, B��1, 5, 8�, C�4, 6, �1�
A�2, �3, 4�, B�0, 1, 2�, C��1, 2, 0�
A�0, 0, 0�, B�1, 0, 3�, C��3, 2, 0�

�vu

1
2��u� v���

A�2, �3, 1�, B�6, 5, �1�, C�7, 2, 2�, D�3, �6, 4�
A�0, 3, 2�, B�1, 5, 5�, C�6, 9, 5�, D�5, 7, 2�

v � ��1, 2, 0�v � �1, 2, 3�
u � �2, �1, 0�u � �3, 2, �1�
v � j � kv � j � k

u � i � j � ku � j

v � �3, 8, 5�.u � ��2, 6, 10��u � v�u � v

�u � v�.u � v

vu

v � 1.5i � 6.2kv � 0.4i � 0.8j � 0.2k

u � 0.7ku � �3i � 2j � 5k

v � �10, �12, �2�v � �2.5, 9, 3�
u � ��8, �6, 4�u � �4, �3.5, 7�

v.u
u � v

u � �u � v���v� � u

v � uu � v

x

y

v

u 6
4

3
2

1

6

4
5

2
3

1

z

vu

v � �2i � j � kv � 2i � j � k

u � i � 6ju � i � j � k

v � �5, �3, 0�v � �1, �2, 1�
u � ��10, 0, 6�u � �2, �3, 1�
v � �0, 1, 0�v � ��2, 5, 0�
u � ��1, 1, 2�u � �12, �3, 0�

v.u
u � v

v � �1, 5, 1�v � �1, �1, 5�
u � �3, �2, �2�u � �7, 3, 2�
v � 2i � 3j � 2kv � 3i � 2j � 5k

u � 3i � 5ku � �2i � 4j

v � v.v � u,u � v,

k � ii � k

k � jj � k

i � jj � i
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11.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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Figure for 39 Figure for 40

40. Optimization A force of 180 pounds acts on the bracket
shown in the figure.

(a) Determine the vector and the vector representing the
force. ( will be in terms of .)

(b) Find the magnitude of the moment about by evaluating

(c) Use the result of part (b) to determine the magnitude of the
moment when 

(d) Use the result of part (b) to determine the angle when the
magnitude of the moment is maximum. At that angle, what
is the relationship between the vectors and Is it what
you expected? Why or why not?

(e) Use a graphing utility to graph the function for the
magnitude of the moment about for Find
the zero of the function in the given domain. Interpret the
meaning of the zero in the context of the problem.

In Exercises 41–44, find 

41. 42.

43. 44.

Volume In Exercises 45 and 46, use the triple scalar product to
find the volume of the parallelepiped having adjacent edges 

and 

45. 46.

Volume In Exercises 47 and 48, find the volume of the
parallelepiped with the given vertices.

47.

48.

49. If and what can you conclude about 
and 

50. Identify the dot products that are equal. Explain your reasoning.
(Assume and are nonzero vectors.)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

True or False? In Exercises 55–58, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

55. It is possible to find the cross product of two vectors in a 
two-dimensional coordinate system.

56. If and are vectors in space that are nonzero and nonparallel,
then 

57. If and then 

58. If and then 

In Exercises 59–66, prove the property of the cross product.

59.

60.

61.

62.

63. is orthogonal to both and 

64. if and only if and are scalar multiples of each
other.

65. Prove that if and are orthogonal.

66. Prove that 

67. Prove Theorem 11.9.

u � �v � w� � �u � w�v � �u � v�w.

vu�u � v� � �u� �v�

vuu � v � 0

v.uu � v

u � �v � w� � �u � v� � w

u � u � 0

c�u � v� � �cu� � v � u � �cv�
u � �v � w� � �u � v� � �u � w�

v � w.u � v � u � w,u � v � u � w,u 
 0,

v � w.u � v � u � w,u 
 0

u � v � v � u.
vu

�w � u� � v��u � v� � w

w � �v � u�u � �w � v�
�u � �w� � v�u � v� � w

�v � w� � uu � �v � w�
wv,u,

v?
uu � v � 0,u � v � 0

��3, 4, 0�, ��1, 5, 5�, ��4, 1, 5�, ��4, 5, 5�
�0, 0, 0�, �0, 4, 0�, ��3, 0, 0�, ��1, 1, 5�
�3, 5, 1�, �5, 0, 5�, �2, 5, 6�, �5, 5, 6�
�0, 0, 0�, �3, 0, 0�, �0, 5, 1�, �2, 0, 5�

y

x

v

u

w
4 6 8

6

4

2

z

y

x

2
2

2

1

v
w

u

z

w � ��4, 0, �4�w � i � k

v � �0, 6, 6�v � j � k

u � �1, 3, 1�u � i � j

w.v,
u,

w � �0, 2, 2�w � �0, 0, 1�
v � �1, 1, 1�v � �0, 3, 0�
u � �2, 0, 0�u � �2, 0, 1�
w � �0, 0, 1�w � k

v � �2, 1, 0�v � j

u � �1, 1, 1�u � i

u � �v � w�.

0� � � � 180�.A

AB
\

?F

�

� � 30�.

� AB
\

� F �.
A

�F
FAB

\

180 lb

θ

A15 in.

12 in.

B

F

18 in.

30°

θ F

O

A

11.4 The Cross Product of Two Vectors in Space 799

51. Define the cross product of vectors and 

52. State the geometric properties of the cross product.

53. If the magnitudes of two vectors are doubled, how will the
magnitude of the cross product of the vectors change? Explain.

v.u

WRITING ABOUT CONCEPTS

54. The vertices of a triangle in space are 
and Explain how to find a vector perpendicular
to the triangle.

�x3, y3, z3�.
�x2, y2, z2�,�x1, y1, z1�,

CAPSTONE
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■ Write a set of parametric equations for a line in space.
■ Write a linear equation to represent a plane in space.
■ Sketch the plane given by a linear equation.
■ Find the distances between points, planes, and lines in space.

Lines in Space
In the plane, is used to determine an equation of a line. In space, it is more
convenient to use to determine the equation of a line.

In Figure 11.43, consider the line through the point and parallel to
the vector The vector is a direction vector for the line and and

are direction numbers. One way of describing the line is to say that it consists of
all points for which the vector is parallel to This means that is
a scalar multiple of and you can write where is a scalar (a real 
number).

By equating corresponding components, you can obtain parametric equations of a
line in space.

If the direction numbers and are all nonzero, you can eliminate the
parameter to obtain symmetric equations of the line.

EXAMPLE 1 Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line that passes through the point
and is parallel to 

Solution To find a set of parametric equations of the line, use the coordinates
and and direction numbers and (see

Figure 11.44).

Parametric equations

Because and are all nonzero, a set of symmetric equations is

Symmetric equations ■
x � 1

2
�

y � 2
4

�
z � 4
�4

.

cb,a,

z � 4 � 4ty � �2 � 4t,x � 1 � 2t,

c � �4b � 4,a � 2,z1 � 4y1 � �2,x1 � 1,

v � �2, 4, �4�.�1, �2, 4�
L

t
cb,a,

PQ
\

� �x � x1, y � y1, z � z1� � �at, bt, ct� � t v

tPQ
\

� t v,v,
PQ

\

v.PQ
\

Q�x, y, z�
Lc

b,a,L,vv � �a, b, c�.
P�x1, y1, z1�L

vectors
slope

800 Chapter 11 Vectors and the Geometry of Space

11.5 Lines and Planes in Space

THEOREM 11.11 PARAMETRIC EQUATIONS OF A LINE IN SPACE

A line parallel to the vector and passing through the point
is represented by the parametric equations

and z � z1 � ct.y � y1 � bt,x � x1 � at,

P�x1, y1, z1�
v � �a, b, c�L

Symmetric equations
x � x1

a
�

y � y1

b
�

z � z1

c

x

y

P(x1, y1, z1)

Q(x, y, z)

PQ = tv

L

v = 〈a, b, c〉

z

Line and its direction vector v
Figure 11.43

L

x y
L

v = 〈2, 4, −4〉

(1, −2, 4)

4

2

−2

−4

2

4

−4

4

2

z

The vector v is parallel to the line 
Figure 11.44

L.
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Neither parametric equations nor symmetric equations of a given line are unique.
For instance, in Example 1, by letting in the parametric equations you would
obtain the point Using this point with the direction numbers 
and would produce a different set of parametric equations

and

EXAMPLE 2 Parametric Equations of a Line Through Two Points

Find a set of parametric equations of the line that passes through the points 
and 

Solution Begin by using the points and to find a direction 
vector for the line passing through and given by

Using the direction numbers and with the point you
can obtain the parametric equations

and ■

Planes in Space
You have seen how an equation of a line in space can be obtained from a point on the
line and a vector to it. You will now see that an equation of a plane in space
can be obtained from a point in the plane and a vector (perpendicular) to the
plane.

Consider the plane containing the point having a nonzero normal
vector as shown in Figure 11.45. This plane consists of all points

for which vector is orthogonal to Using the dot product, you can write
the following.

The third equation of the plane is said to be in standard form.

By regrouping terms, you obtain the general form of the equation of a plane in space.

a�x � x1� � b�y � y1� � c�z � z1� � 0

 �a, b, c� � �x � x1, y � y1, z � z1� � 0

 n � PQ
\

� 0

n.PQ
\

Q�x, y, z�
n � �a, b, c�,

P�x1, y1, z1�

normal
parallel

z � 5t.y � 1 � 2t,x � �2 � 3t,

P��2, 1, 0�,c � 5a � 3, b � 2,

v � PQ
\

� �1 � ��2�, 3 � 1, 5 � 0� � �3, 2, 5� � �a, b, c�.

Q,P
Q�1, 3, 5�P��2, 1, 0�

�1, 3, 5�.
��2, 1, 0�

z � �4t.y � 2 � 4t,x � 3 � 2t,

c � �4
b � 4,a � 2,�3, 2, 0�.

t � 1

11.5 Lines and Planes in Space 801

NOTE As varies over all real numbers, the parametric equations in Example 2 determine the
points on the line. In particular, note that and give the original points

and ■�1, 3, 5�.��2, 1, 0�
t � 1t � 0�x, y, z�

t

THEOREM 11.12 STANDARD EQUATION OF A PLANE IN SPACE

The plane containing the point and having normal vector 
can be represented by the standard form of the equation of a plane

a�x � x1� � b� y � y1� � c�z � z1� � 0.

�a, b, c�n ��x1, y1, z1�

General form of equation of planeax � by � cz � d � 0

z

x

y

n

P

Q

n · PQ = 0

The normal vector n is orthogonal to each
vector in the plane.
Figure 11.45

PQ
\
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Given the general form of the equation of a plane, it is easy to find a normal
vector to the plane. Simply use the coefficients of and and write 

EXAMPLE 3 Finding an Equation of a Plane in Three-Space

Find the general equation of the plane containing the points and

Solution To apply Theorem 11.12 you need a point in the plane and a vector that is
normal to the plane. There are three choices for the point, but no normal vector is
given. To obtain a normal vector, use the cross product of vectors and extending
from the point to the points and as shown in Figure 11.46.
The component forms of and are

and it follows that

is normal to the given plane. Using the direction numbers for and the point
you can determine an equation of the plane to be

Standard form

General form

Simplified general form ■

Two distinct planes in three-space either are parallel or intersect in a line. If they
intersect, you can determine the angle between them from the angle
between their normal vectors, as shown in Figure 11.47. Specifically, if vectors and

are normal to two intersecting planes, the angle between the normal vectors is
equal to the angle between the two planes and is given by

Consequently, two planes with normal vectors and are

1. perpendicular if 

2. parallel if is a scalar multiple of n2.n1

n1 � n2 � 0.

n2n1

�n2

n1

�0 � � � ��2�

 3x � 2y � 4z � 12 � 0.

 9x � 6y � 12z � 36 � 0

 9�x � 2� � 6� y � 1� � 12�z � 1� � 0

 a�x � x1� � b� y � y1� � c�z � z1� � 0

�x1, y1, z1� � �2, 1, 1�,
n

 � �a, b, c�
 � 9i � 6j � 12k

 � � i
�2
�4

j
3
0

k
0
3�

 n � u 	 v

v � ��2 � 2, 1 � 1, 4 � 1� � ��4, 0, 3�
u � �0 � 2, 4 � 1, 1 � 1� � ��2, 3, 0�

vu
��2, 1, 4�,�0, 4, 1��2, 1, 1�

vu

��2, 1, 4�.
�0, 4, 1�,�2, 1, 1�,

n � �a, b, c�.zy,x,

802 Chapter 11 Vectors and the Geometry of Space

(−2, 1, 4)

(0, 4, 1)(2, 1, 1)

2
3

4
5

5

4

3

2

1

2

−2

−3

x y

u

v

z

A plane determined by u and v
Figure 11.46

n2

n1
θ

θ

The angle between two planes
Figure 11.47

�

NOTE In Example 3, check to see that each of the three original points satisfies the equation
■3x � 2y � 4z � 12 � 0.

Angle between two planescos � � �n1 � n2�
�n1 � �n2 �

.
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EXAMPLE 4 Finding the Line of Intersection of Two Planes

Find the angle between the two planes given by

Equation of plane 1

Equation of plane 2

and find parametric equations of their line of intersection (see Figure 11.48).

Solution Normal vectors for the planes are and 
Consequently, the angle between the two planes is determined as follows.

Cosine of angle between and 

This implies that the angle between the two planes is You can find the line
of intersection of the two planes by simultaneously solving the two linear equations
representing the planes. One way to do this is to multiply the first equation by and
add the result to the second equation.

Substituting back into one of the original equations, you can determine that
Finally, by letting you obtain the parametric equations

and Line of intersection

which indicate that 1, 4, and 7 are direction numbers for the line of intersection.
■

Note that the direction numbers in Example 4 can be obtained from the cross
product of the two normal vectors as follows.

This means that the line of intersection of the two planes is parallel to the cross
product of their normal vectors.

 � i � 4j � 7k

 � ��2
3

1
�2�i � �12 1

�2�j � �12 �2
3�k

 n1 	 n2 � � i
1
2

j
�2

3

k
1

�2�

z � 7ty � 4t,x � t,

t � z�7,x � z�7.
y � 4z�7

y �
4z
7

     7y �  4z � 0

 2x �  3y �  2z � 02x � 3y � 2z � 0

�2x �  4y �  2z � 0 x � 2y �  z � 0

�2

� 	 53.55
.

 	 0.59409

 �
6


102

 � ��6�

6 
17

n2n1 cos � � �n1 � n2�
�n1 � �n2 �

n2 � �2, 3, �2�.n1 � �1, �2, 1�

 2x � 3y � 2z � 0

 x � 2y � z � 0

11.5 Lines and Planes in Space 803

x

y

z

θ

Line of
intersection

Plane 2

Plane 1

Figure 11.48

NOTE The three-dimensional rotatable graphs that are available in the premium eBook for
this text can help you visualize surfaces such as those shown in Figure 11.48. If you have access
to these graphs, you should use them to help your spatial intuition when studying this section
and other sections in the text that deal with vectors, curves, or surfaces in space. ■
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Sketching Planes in Space
If a plane in space intersects one of the coordinate planes, the line of intersection is
called the trace of the given plane in the coordinate plane. To sketch a plane in space,
it is helpful to find its points of intersection with the coordinate axes and its traces in
the coordinate planes. For example, consider the plane given by

Equation of plane

You can find the trace by letting and sketching the line

trace

in the plane. This line intersects the -axis at and the axis at In
Figure 11.49, this process is continued by finding the trace and the trace, and
then shading the triangular region lying in the first octant.

-trace -trace -trace 

Traces of the plane 
Figure 11.49

If an equation of a plane has a missing variable, such as the plane
must be parallel to the axis represented by the missing variable, as shown in Figure
11.50. If two variables are missing from an equation of a plane, it is parallel to the
coordinate plane represented by the missing variables, as shown in Figure 11.51.

Plane is parallel Plane is parallel Plane is parallel
to the -plane to the -plane to the -plane
Figure 11.51

xyxzyz
cz � d � 0by � d � 0ax � d � 0

x

y

z

d
c

 0, 0, − ))

x

y

z

d
b

0, −    , 0))
d
a

, 0, 0))x

y

−

z

2x � z � 1,

3x � 2y � 4z � 12
3x � 4z � 122y � 4z � 123x � 2y � 12

�y � 0�:xz�x � 0�:yz�z � 0�:xy

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

y

x

(4, 0, 0)

(0, 6, 0)

z

xz-yz-
�0, 6, 0�.y-�4, 0, 0�xxy-

xy-3x � 2y � 12

z � 0xy-

3x � 2y � 4z � 12.
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y

x

z

1
2
, 0, 0( )

(0, 0, 1)

Plane: 2x + z = 1

Plane is parallel to the -axis.
Figure 11.50

y2x � z � 1
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Distances Between Points, Planes, and Lines
This section is concluded with the following discussion of two basic types of
problems involving distance in space.

1. Finding the distance between a point and a plane

2. Finding the distance between a point and a line

The solutions of these problems illustrate the versatility and usefulness of vectors in
coordinate geometry: the first problem uses the dot product of two vectors, and the
second problem uses the cross product.

The distance between a point and a plane is the length of the shortest line
segment connecting to the plane, as shown in Figure 11.52. If is point in the
plane, you can find this distance by projecting the vector onto the normal vector

The length of this projection is the desired distance.

To find a point in the plane given by let 
and Then, from the equation you can conclude that the point

lies in the plane.

EXAMPLE 5 Finding the Distance Between a Point and a Plane

Find the distance between the point and the plane given by

Solution You know that is normal to the given plane. To find a point
in the plane, let and and obtain the point The vector from 
to is given by

Using the Distance Formula given in Theorem 11.13 produces

Distance between a point and a plane

■ �
16

14

.

 � ��3 � 5 � 8�

14

 D � �PQ
\

� n�
�n�

� ���1, 5, �4� � �3, �1, 2��

9 � 1 � 4

 � ��1, 5, �4�.
 PQ

\

� �1 � 2, 5 � 0, �4 � 0�

Q
PP�2, 0, 0�.z � 0,y � 0

n � �3, �1, 2�

3x � y � 2z � 6.

Q�1, 5, �4�

��d�a, 0, 0�
ax � d � 0,z � 0.

y � 0ax � by � cz � d � 0 �a � 0�,

n.
PQ

\

anyPQ
QD

11.5 Lines and Planes in Space 805

THEOREM 11.13 DISTANCE BETWEEN A POINT AND A PLANE

The distance between a plane and a point (not in the plane) is

where is a point in the plane and is normal to the plane.nP

D � �projnPQ
\

� � �PQ
\

� n�
�n�

Q

NOTE The choice of the point in Example 5 is arbitrary. Try choosing a different point in
the plane to verify that you obtain the same distance. ■

P

D = ⎜⎜projn PQ⎜⎜

projn PQ
P

Q

D

n

The distance between a point and a plane
Figure 11.52
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From Theorem 11.13, you can determine that the distance between the point
and the plane given by is

or

where is a point in the plane and 

EXAMPLE 6 Finding the Distance Between Two Parallel Planes

Find the distance between the two parallel planes given by

and

Solution The two planes are shown in Figure 11.53. To find the distance between the
planes, choose a point in the first plane, say Then, from the
second plane, you can determine that and and conclude
that the distance is

Distance between a point and a plane

■

The formula for the distance between a point and a line in space resembles that
for the distance between a point and a plane—except that you replace the dot product
with the length of the cross product and the normal vector with a direction vector
for the line.

n

 �
16

56

�
8


14
	 2.14.

 � �6�2� � ��2��0� � �4��0� � 4�

62 � ��2�2 � 42

 D � �ax0 � by0 � cz0 � d�

a2 � b2 � c2

d � 4,c � 4,b � �2,a � 6,
�x0, y0, z0� � �2, 0, 0�.

6x � 2y � 4z � 4 � 0.3x � y � 2z � 6 � 0

d � ��ax1 � by1 � cz1�.P�x1, y1, z1�

D � �a�x0 � x1� � b�y0 � y1� � c�z0 � z1��

a2 � b2 � c2

ax � by � cz � d � 0Q�x0, y0, z0�

806 Chapter 11 Vectors and the Geometry of Space

Distance between a point and a planeD � �ax0 � by0 � cz0 � d�

a2 � b2 � c2

6x − 2y + 4z + 4 = 0

3x − y + 2z − 6 = 0

D

(2, 0, 0)
2

3

−6

yx

z

The distance between the parallel planes is
approximately 2.14.
Figure 11.53

θ

D = ⎜⎜PQ⎜⎜ sin θ

Point

LineP
u

Q

The distance between a point and a line
Figure 11.54

THEOREM 11.14 DISTANCE BETWEEN A POINT AND A LINE IN SPACE

The distance between a point and a line in space is given by

where is a direction vector for the line and is a point on the line.Pu

D �
�PQ

\

	 u�
�u�

Q

PROOF In Figure 11.54, let be the distance between the point and the given
line. Then where is the angle between and By Property 2 of
Theorem 11.8, you have

Consequently,

■D � �PQ
\

� sin � �
�PQ

\

	 u�
�u�

 .

�u� �PQ
\

� sin � � �u 	 PQ
\

� � �PQ
\

	 u�.

PQ
\

.u�D � �PQ
\

� sin �,
QD
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EXAMPLE 7 Finding the Distance Between a Point and a Line

Find the distance between the point and the line given by

and

Solution Using the direction numbers 3, and 4, you know that a direction 
vector for the line is

Direction vector for line

To find a point on the line, let and obtain

Point on the line

So,

and you can form the cross product

Finally, using Theorem 11.14, you can find the distance to be

See Figure 11.55. ■ � 
6 	 2.45.

 �

174

29

 D �
� PQ

\

	 u�
�u �

PQ
\

	 u � � i
5
3

j
�1
�2

k
3
4� � 2i � 11j � 7k � �2, �11, �7�.

PQ
\

� �3 � ��2�, �1 � 0, 4 � 1� � �5, �1, 3�

P � ��2, 0, 1�.

t � 0

u � �3, �2, 4�.

�2,

z � 1 � 4t.y � �2t,x � �2 � 3t,

Q�3, �1, 4�

11.5 Lines and Planes in Space 807

In Exercises 1 and 2, the figure shows the graph of a line given
by the parametric equations. (a) Draw an arrow on the line to
indicate its orientation. To print an enlarged copy of the graph,
go to the website www.mathgraphs.com. (b) Find the coordinates
of two points, and on the line. Determine the vector 
What is the relationship between the components of the vector
and the coefficients of in the parametric equations? Why is this
true? (c) Determine the coordinates of any points of intersection
with the coordinate planes. If the line does not intersect a 
coordinate plane, explain why.

1. 2.

In Exercises 3 and 4, determine whether each point lies on the
line.

3.

(a) (b)

4.

(a) (b)

In Exercises 5–10, find sets of (a) parametric equations and 
(b) symmetric equations of the line through the point parallel to
the given vector or line (if possible). (For each line, write the
direction numbers as integers.)

5.

6.

7.

8.

9.

10.
x � 1

3
�

y � 1
�2

� z � 3��3, 5, 4�

x � 3 � 3t, y � 5 � 2t, z � �7 � t�1, 0, 1�
v � 6j � 3k��3, 0, 2�
v � 2i � 4j � 2k��2, 0, 3�
v � ��2, 52, 1��0, 0, 0�
v � �3, 1, 5��0, 0, 0�
Parallel to                                           Point        

�1, �1, �3)�7, 23, 0�

x � 3
2

�
y � 7

8
� z � 2

�2, 3, 5��0, 6, 6�
x � �2 � t, y � 3t, z � 4 � t

z

x yyx

z

z � 1 � tz � 2 � 5t

y � 2y � 2 � t

x � 2 � 3tx � 1 � 3t

t

PQ
\

.Q,P

11.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x

y

D

4
3

2
1

−2

5
4

3
2

1

−2

6

5

3

2

−1

Q = (3, −1, 4)

z

The distance between the point and the
line is 
Figure 11.55


6 	 2.45.
Q
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In Exercises 11–14, find sets of (a) parametric equations and (b)
symmetric equations of the line through the two points (if pos-
sible). (For each line, write the direction numbers as integers.)

11. 12.

13. 14.

In Exercises 15–22, find a set of parametric equations of the
line.

15. The line passes through the point and is parallel to the 
-plane and the -plane.

16. The line passes through the point and is parallel to
the -plane and the -plane.

17. The line passes through the point and is perpendicular
to the plane given by 

18. The line passes through the point and is perpendicular
to the plane given by 

19. The line passes through the point and is parallel to

20. The line passes through the point and is parallel to

21. The line passes through the point and is parallel to the
line 

22. The line passes through the point and is parallel to
the line 

In Exercises 23–26, find the coordinates of a point on the line
and a vector parallel to the line.

23.

24.

25. 26.

In Exercises 27–30, determine if any of the lines are parallel or
identical.

27.

28.

29.

30.

In Exercises 31–34, determine whether the lines intersect, and if
so, find the point of intersection and the cosine of the angle of
intersection.

31.

32.

33.

34.

In Exercises 35 and 36, use a computer algebra system to graph
the pair of intersecting lines and find the point of intersection.

35.

36.

Cross Product In Exercises 37 and 38, (a) find the coordinates
of three points and in the plane, and determine the
vectors and (b) Find What is the relation-
ship between the components of the cross product and the 
coefficients of the equation of the plane? Why is this true?

37. 38.

In Exercises 39 and 40, determine whether the plane passes
through each point.

39.

(a) (b)

40.

(a) (b) ��1, 5, �1��3, 6, �2�
2x � y � 3z � 6 � 0

�5, 2, 2���7, 2, �1)

x � 2y � 4z � 1 � 0

y

x

z

x
y

z

2x � 3y � 4z � 44x � 3y � 6z � 6

PQ
\

 	  PR
\

.PR
\

.PQ
\

RQ,P,

x � �5s � 12, y � 3s � 11, z � �2s � 4

x � 2t � 1, y � �4t � 10, z � t

x � �2s � 7, y � s � 8, z � 2s � 1

x � 2t � 3, y � 5t � 2, z � �t � 1

x � 3
2

� y � 5 �
z � 2

4
x � 2
�3

�
y � 2

6
� z � 3,

x � 1
4

� y � 2 �
z � 3
�3

x
3

�
y � 2
�1

� z � 1,

x � 3s � 1, y � 2s � 4, z � �s � 1

x � �3t � 1, y � 4t � 1, z � 2t � 4

z � s � 1y � 2s � 3,x � 2s � 2,

z � �t � 1y � 3,x � 4t � 2,

x � 3
2

�
y � 1

4
�

z � 2
�1

L4:

x � 2
1

�
y � 1

0.5
�

z � 3
1

L3:

x � 1
4

�
y � 1

2
�

z � 3
4

L2:

x � 3
2

�
y � 2

1
�

z � 2
2

L1:

x � 2
�2

�
y � 3

1
�

z � 4
1.5

L4:

x � 4
�8

�
y � 1

4
�

z � 18
�6

L3:

x � 7
2

�
y � 4

1
�

z � 6
5

L2:

x � 8
4

�
y � 5
�2

�
z � 9

3
L1:

z � 8 � 3ty � 1 � t,x � 5 � 2t,L4:

z � 1 � 4ty � 3 � 10t,x � �1 � 2t,L3:

z � 3ty � �1 � t,x � 1 � 2t,L2:

z � 1 � 2ty � �6t,x � 3 � 2t,L1:

z � 5 � 6ty � 3 � 4t,x � �4 � 6t,L4:

z � 7 � 8ty � 3 � 4t,x � 10 � 6t,L3:

z � 13 � 8ty � 2 � 4t,x � 6t,L2:

z � 5 � 4ty � �2 � 2t,x � 6 � 3t,L1:

x � 3
5

�
y
8

�
z � 3

6
x � 7

4
�

y � 6
2

� z � 2

z � 4 � 3ty � 5 � t,x � 4t,

z � �2y � �1 � 2t,x � 3 � t,

v
P

z � 0.y � �4 � 2t,x � 5 � 2t,
��6, 0, 8�

z � �2 � t.y � 1 � t,x � �t,
�2, 1, 2�

v � 5i � j.
��1, 4, �3�

v � �2, �1, 3�.
�5, �3, �4�

�x � 2y � z � 5.
��4, 5, 2�

3x � 2y � z � 6.
�2, 3, 4�

yzxy
��4, 5, 2�

yzxz
�2, 3, 4�

�0, 0, 25�, �10, 10, 0��7, �2, 6�, ��3, 0, 6�
�0, 4, 3�, ��1, 2, 5��5, �3, �2�, ��2

3, 23, 1�
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In Exercises 41–46, find an equation of the plane passing
through the point perpendicular to the given vector or line.

41.

42.

43.

44.

45.

46.

In Exercises 47–58, find an equation of the plane.

47. The plane passes through and 

48. The plane passes through and 

49. The plane passes through and 

50. The plane passes through the point and is parallel to
the plane.

51. The plane passes through the point and is parallel to
the plane.

52. The plane contains the axis and makes an angle of with
the positive axis.

53. The plane contains the lines given by

and

54. The plane passes through the point and contains the
line given by

55. The plane passes through the points and 
and is perpendicular to the plane 

56. The plane passes through the points and 
and is perpendicular to the plane 

57. The plane passes through the points and 
and is parallel to the axis.

58. The plane passes through the points and 
and is parallel to the axis.

In Exercises 59 and 60, sketch a graph of the line and find the
points (if any) where the line intersects the -, -, and -planes.

59.

60.

In Exercises 61– 64, find an equation of the plane that 
contains all the points that are equidistant from the given points.

61. 62.

63. 64.

In Exercises 65–70, determine whether the planes are parallel,
orthogonal, or neither. If they are neither parallel nor
orthogonal, find the angle of intersection.

65. 66.

67. 68.

69. 70.

In Exercises 71–78, sketch a graph of the plane and label any
intercepts.

71 72.

73. 74.

75. 76.

77. 78.

In Exercises 79–82, use a computer algebra system to graph the
plane.

79. 80.

81. 82.

In Exercises 83–86, determine if any of the planes are parallel
or identical.

83. 84.

85.

86.

In Exercises 87– 90, describe the family of planes represented by
the equation, where is any real number.

87. 88.

89. 90.

In Exercises 91 and 92, (a) find the angle between the two
planes, and (b) find a set of parametric equations for the line of
intersection of the planes.

91. 92.

�x � y � 5z � 5x � 4y � 2z � 0

6x � 3y � z � 53x � 2y � z � 7

x � cz � 0cy � z � 0

x � y � cx � y � z � c

c

12x � 18y � 6z � 5P4:

�20x � 30y � 10z � 9P3:

6x � 9y � 3z � 2P2:

�60x � 90y � 30z � 27P1:

75x � 50y � 125z � 250P4:

�3x � 2y � 5z � 8P3:

�6x � 4y � 10z � 5P2:

3x � 2y � 5z � 10P1:

�4x � 2y � 6z � 11P4:3x � 2y � 2z � 4P4:

8x � 4y � 12z � 5P3:6x � 4y � 4z � 9P3:

3x � 5y � 2z � 6P2:�5x � 2y � 8z � 6P2:

2x � y � 3z � 8P1:15x � 6y � 24z � 17P1:

2.1x � 4.7y � z � �3�5x � 4y � 6z � �8

x � 3z � 32x � y � z � 6

z � 8x � 5

2x � y � 8x � z � 6

2x � y � z � 42x � y � 3z � 4

3x � 6y � 2z � 64x � 2y � 6z � 12

4x � y � 8z � 105x � 25y � 5z � �3

2x � z � 1x � 5y � z � 1

x � 4y � 2z � 05x � y � z � 4

3x � 2y � z � 7x � 3y � 6z � 4

�9x � 3y � 12z � 4x � 4y � 7z � 1

3x � y � 4z � 35x � 3y � z � 4

�2, �1, 6���5, 1, �3�,�6, �2, 4���3, 1, 2�,
�2, 0, 1)�1, 0, 2�,�0, 2, 2��2, 2, 0�,

x � 2
3

� y � 1 �
z � 3

2

z � �4 � ty � �2 � 3t,x � 1 � 2t,

yzxzxy

z-
��3, 5, 7��4, 2, 1�

x-
�2, 5, 6��1, �2, �1�

6x � 7y � 2z � 10.
�3, 1, �5��3, 2, 1�

2x � 3y � z � 3.
��1, 1, �1��2, 2, 1�

x
2

�
y � 4
�1

� z.

�2, 2, 1�

x � 2
�3

�
y � 1

4
�

z � 2
�1

.
x � 1
�2

� y � 4 � z

x-
��6y-

xy-
�1, 2, 3�

yz-
�1, 2, 3�

��1, �2, 2�.�3, 2, 1�,�1, 2, 3�,
�1, �2, �2�.�2, 1, 5�,�3, �1, 2�,

��3, �1, 5�.�2, 0, 3�,�0, 0, 0�,

x � 1
4

� y � 2 �
z � 3
�3

�3, 2, 2�

x � �1 � 2t, y � 5 � t, z � 3 � 2t��1, 4, 0�
n � �3i � 2k�0, 0, 0�
n � 2i � 3j � k�3, 2, 2�
n � k�0, �1, 4�
n � j�1, 3, �7�
Perpendicular to                             Point      

11.5 Lines and Planes in Space 809
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810 Chapter 11 Vectors and the Geometry of Space

111. Give the parametric equations and the symmetric equations
of a line in space. Describe what is required to find these
equations.

112. Give the standard equation of a plane in space. Describe
what is required to find this equation.

113. Describe a method of finding the line of intersection of
two planes.

114. Describe each surface given by the equations 
and z � c.y � b,

x � a,

WRITING ABOUT CONCEPTS

115. Describe a method for determining when two planes

and

are (a) parallel and (b) perpendicular. Explain your
reasoning.

116. Let and be nonparallel lines that do not intersect. Is
it possible to find a nonzero vector such that is 
perpendicular to both and Explain your reasoning.

117. Find an equation of the plane with -intercept 
-intercept and -intercept (Assume 

and are nonzero.)cb,
a,�0, 0, c�.z�0, b, 0�,y

�a, 0, 0�,x

L2?L1

vv
L2L1

a2x � b2y � c2z � d2 � 0

a1x � b1y � c1z � d1 � 0

WRITING ABOUT CONCEPTS (cont inued)

Year 1999 2000 2001 2002 2003 2004 2005

x 1.4 1.4 1.4 1.6 1.6 1.7 1.7

y 7.3 7.1 7.0 7.0 6.9 6.9 6.9

z 6.2 6.1 5.9 5.8 5.6 5.5 5.6

In Exercises 93–96, find the point(s) of intersection (if any) of
the plane and the line. Also determine whether the line lies in
the plane.

93.

94.

95.

96.

In Exercises 97–100, find the distance between the point and the
plane.

97. 98.

99. 100.

In Exercises 101–104, verify that the two planes are parallel,
and find the distance between the planes.

101. 102.

103. 104.

In Exercises 105–108, find the distance between the point and
the line given by the set of parametric equations.

105.

106.

107.

108.

In Exercises 109 and 110, verify that the lines are parallel, and
find the distance between them.

109.

110.

119. Describe and find an equation for the surface generated by all
points that are four units from the point 

120. Describe and find an equation for the surface generated by 
all points that are four units from the plane

121. Modeling Data Per capita consumptions (in gallons) of
different types of milk in the United States from 1999 through
2005 are shown in the table. Consumptions of flavored milk,
plain reduced-fat milk, and plain light and skim milks are repre-
sented by the variables and respectively. (Source:
U.S. Department of Agriculture)

A model for the data is given by 

(a) Complete a fourth row in the table using the model to
approximate for the given values of and Compare the
approximations with the actual values of 

(b) According to this model, any increases in consumption of
two types of milk will have what effect on the consumption
of the third type?

z.
y.xz

0.92x � 1.03y � z � 0.02.

z,y,x,

4x � 3y � z � 10.
�x, y, z�

�3, �2, 5�.�x, y, z�

z � �8ty � 3 � 6t,x � �1 � 4t,L2:

z � 1 � 12ty � �2 � 9t,x � 3 � 6t,L1:

z � 4 � 3ty � 1 � 6t,x � 3t,L2:

z � 4 � ty � 3 � 2t,x � 2 � t,L1:

z � 1 � ty � 1 � 3t,x � 3,�4, �1, 5�;
z � �2ty � 2 � t,x � 1 � t,��2, 1, 3�;

x � 2t,  y � t � 3,  z � 2t � 2�1, �2, 4�;
x � 4t � 2,  y � 3,  z � �t � 1�1, 5, �2�;

2x � 4z � 106x � 12y � 14z � 25

2x � 4z � 4�3x � 6y � 7z � 1

4x � 4y � 9z � 18x � 3y � 4z � 6

4x � 4y � 9z � 7x � 3y � 4z � 10

3x � 4y � 5z � 62x � y � z � 5

�1, 3, �1��2, 8, 4�
5x � y � z � 92x � 3y � z � 12

�0, 0, 0��0, 0, 0�

x � 4
2

�
y � 1
�3

�
z � 2

5
5x � 3y � 17,

x � 1
3

�
y � 1
�2

� z � 32x � 3y � 10,

x � 1
4

�
y
2

�
z � 3

6
2x � 3y � �5,

x �
1
2

�
y � �3�2�

�1
�

z � 1
2

2x � 2y � z � 12,

118. Match the equation or set of equations with the description
it represents.

(a) Set of parametric equations of a line

(b) Set of symmetric equations of a line

(c) Standard equation of a plane in space

(d) General form of an equation of a plane in space

(i)

(ii)

(iii)

(iv) 2(x � 1) � (y � 3) � 4(z � 5) � 0

x � 4 � 7t, y � 3 � t, z � 3 � 3t

2x � 7y � 5z � 10 � 0

�x � 6��2 � �y � 1���3 � z�1
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122. Mechanical Design The figure shows a chute at the top of a
grain elevator of a combine that funnels the grain into a bin.
Find the angle between two adjacent sides.

123. Distance Two insects are crawling along different lines in
three-space. At time (in minutes), the first insect is at the
point on the line 
Also, at time the second insect is at the point on the
line 

Assume that distances are given in inches.

(a) Find the distance between the two insects at time 

(b) Use a graphing utility to graph the distance between the
insects from to 

(c) Using the graph from part (b), what can you conclude
about the distance between the insects?

(d) How close to each other do the insects get?

124. Find the standard equation of the sphere with center 
that is tangent to the plane given by 

125. Find the point of intersection of the plane 
and the line through that is perpendicular to this
plane.

126. Show that the plane is parallel to the line
and find the distance

between them.

127. Find the point of intersection of the line through 
and and the plane given by 

128. Find a set of parametric equations for the line passing through
the point that is parallel to the plane given by

and perpendicular to the line 

True or False? In Exercises 129–134, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

129. If is any vector in the plane given by
then 

130. Every two lines in space are either intersecting or parallel.

131. Two planes in space are either intersecting or parallel.
132. If two lines and are parallel to a plane then and 

are parallel.

133. Two planes perpendicular to a third plane in space are parallel.

134. A plane and a line in space are either intersecting or parallel.

L2L1P,L2L1

a1a2 � b1b2 � c1c2 � 0.a2x � b2y � c2z � d2 � 0,
v � a1i � b1j � c1k

z � 1 � t.y � 1 � t,
x � t,x � y � z � 5,

�1, 0, 2�

x � y � z � 2.�3, �4, 2�,
�1, �3, 1�

z � 4,y � �1 � 4t,x � �2 � 2t,
2x � y � 3z � 4

�5, 4, �3�
3x � y � 4z � 7

2x � 4y � 3z � 8.
��3, 2, 4�

t � 10.t � 0

t � 0.

z � 2t.y � 2 � t,x � 1 � t,
�x, y, z�t,

z � 3 � t.y � 8 � t,x � 6 � t,�x, y, z�
t

6 in.
6 in.

8 in.

8 in.

8 in.

11.5 Lines and Planes in Space 811

You have learned two distance formulas in this section—the
distance between a point and a plane, and the distance between a
point and a line. In this project you will study a third distance
problem—the distance between two skew lines. Two lines in space
are skew if they are neither parallel nor intersecting (see figure).

(a) Consider the following two lines in space.

(i) Show that these lines are not parallel.

(ii) Show that these lines do not intersect, and therefore are
skew lines.

(iii) Show that the two lines lie in parallel planes.

(iv) Find the distance between the parallel planes from part
(iii). This is the distance between the original skew
lines.

(b) Use the procedure in part (a) to find the distance between
the lines.

(c) Use the procedure in part (a) to find the distance between
the lines.

(d) Develop a formula for finding the distance between the
skew lines.

L1

L2

L2: x � x2 � a2s,  y � y2 � b2s,  z � z2 � c2s

L1: x � x1 � a1t,  y � y1 � b1t,  z � z1 � c1t

L2: x � 1 � 4s,  y � �2 � s,  z � �3 � 3s

L1: x � 3t,  y � 2 � t,  z � �1 � t

L2: x � 1 � s,  y � 4 � s,  z � �1 � s

L1: x � 2t,  y � 4t,  z � 6t

L2: x � 4 � s,  y � �6 � 8s,  z � 7 � 3s

L1: x � 4 � 5t,  y � 5 � 5t,  z � 1 � 4t

Distances in Space

S E C T I O N  P R O J E C T
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■ Recognize and write equations of cylindrical surfaces.
■ Recognize and write equations of quadric surfaces.
■ Recognize and write equations of surfaces of revolution.

Cylindrical Surfaces
The first five sections of this chapter contained the vector portion of the preliminary
work necessary to study vector calculus and the calculus of space. In this and the next
section, you will study surfaces in space and alternative coordinate systems for space.
You have already studied two special types of surfaces.

1. Spheres: Section 11.2

2. Planes: Section 11.5

A third type of surface in space is called a cylindrical surface, or simply a
cylinder. To define a cylinder, consider the familiar right circular cylinder shown in
Figure 11.56. You can imagine that this cylinder is generated by a vertical line moving
around the circle in the plane. This circle is called a generating
curve for the cylinder, as indicated in the following definition.

For the right circular cylinder shown in Figure 11.56, the equation of the
generating curve is 

Equation of generating curve in plane

To find an equation of the cylinder, note that you can generate any one of the rulings
by fixing the values of and and then allowing to take on all real values. In this
sense, the value of is arbitrary and is, therefore, not included in the equation. In other
words, the equation of this cylinder is simply the equation of its generating curve.

Equation of cylinder in spacex2 � y2 � a2

z
zyx

xy-x2 � y2 � a2.

xy-x2 � y2 � a2

ax � by � cz � d � 0

�x � x0�2 � �y � y0�2 � �z � z0�2 � r2

812 Chapter 11 Vectors and the Geometry of Space

11.6 Surfaces in Space

DEFINITION OF A CYLINDER

Let be a curve in a plane and let be a line not in a parallel plane. The set
of all lines parallel to and intersecting is called a cylinder. is called the
generating curve (or directrix) of the cylinder, and the parallel lines are
called rulings.

CCL
LC

EQUATIONS OF CYLINDERS

The equation of a cylinder whose rulings are parallel to one of the coordinate
axes contains only the variables corresponding to the other two axes.

NOTE Without loss of generality, you can assume that lies in one of the three coordinate
planes. Moreover, this text restricts the discussion to right cylinders—cylinders whose rulings
are perpendicular to the coordinate plane containing as shown in Figure 11.57. ■C,

C

y

x

Right circular cylinder:
x2 + y2 =  a2

z

Rulings are parallel to -axis.
Figure 11.56

z

x

z
Generating
curve C

Ruling 
intersecting C

y

Cylinder: Rulings intersect and are parallel
to the given line.
Figure 11.57

C
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EXAMPLE 1 Sketching a Cylinder

Sketch the surface represented by each equation.

a. b.

Solution

a. The graph is a cylinder whose generating curve, is a parabola in the 
plane. The rulings of the cylinder are parallel to the axis, as shown in Figure

11.58(a).

b. The graph is a cylinder generated by the sine curve in the plane. The rulings are
parallel to the axis, as shown in Figure 11.58(b).

(a) Rulings are parallel to -axis. (b) Rulings are parallel to -axis.
Figure 11.58 ■

Quadric Surfaces
The fourth basic type of surface in space is a quadric surface. Quadric surfaces are
the three-dimensional analogs of conic sections.

The intersection of a surface with a plane is called the trace of the surface in the
plane. To visualize a surface in space, it is helpful to determine its traces in some well-
chosen planes. The traces of quadric surfaces are conics. These traces, together with
the standard form of the equation of each quadric surface, are shown in the table on
pages 814 and 815.

yx

z

y

π

1

x

Cylinder: z = sin x

Generating curve C
lies in xz-plane

z

x

y

Cylinder: z = y2

Generating curve C
lies in yz-plane

y-
xz-

x-yz-
z � y2,

0 � x � 2�z � sin x,z � y2

11.6 Surfaces in Space 813

QUADRIC SURFACE

The equation of a quadric surface in space is a second-degree equation in
three variables. The general form of the equation is

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one
sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and
hyperbolic paraboloid.

Ax2 � By2 � Cz2 � Dxy � Exz � Fyz � Gx � Hy � Iz � J � 0.

Study Tip In the table on pages 814
and 815, only one of several orientations
of each quadric surface is shown. If the
surface is oriented along a different 
axis, its standard equation will change
accordingly, as illustrated in Examples 2
and 3. The fact that the two types of
paraboloids have one variable raised
to the first power can be helpful in
classifying quadric surfaces. The other
four types of basic quadric surfaces have
equations that are of second degree in all
three variables.

STUDY TIP
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814 Chapter 11 Vectors and the Geometry of Space

Hyperboloid of Two Sheets

Ellipse Parallel to plane
Hyperbola Parallel to plane
Hyperbola Parallel to plane

The axis of the hyperboloid
corresponds to the variable whose
coefficient is positive. There is 
no trace in the coordinate plane
perpendicular to this axis.

yz-
xz-
xy-

Plane                          Trace         

z2

c2 �
x2

a2 �
y2

b2 � 1
z

x y

yz-trace

parallel to
xy-plane

xz-trace

no -tracexy

y

x

xy-trace

xz-trace
yz-trace

z

y

xz-trace

xy-trace

yz-trace

x

z

x y

z

y

x

z

y
x

z
Ellipsoid

Ellipse Parallel to plane
Ellipse Parallel to plane
Ellipse Parallel to plane

The surface is a sphere if
a � b � c � 0.

yz-
xz-
xy-

Plane                          Trace   

x2

a2 �
y2

b2 �
z2

c2 � 1

Hyperboloid of One Sheet

Ellipse Parallel to plane
Hyperbola Parallel to plane
Hyperbola Parallel to plane

The axis of the hyperboloid
corresponds to the variable whose
coefficient is negative.

yz-
xz-
xy-

Plane                         Trace         

x2

a2 �
y2

b2 �
z2

c2 � 1
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11.6 Surfaces in Space 815

Hyperbolic Paraboloid

Hyperbola Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corre-
sponds to the variable raised to the
first power.

Plane                        Trace         

z �
y2

b2 �
x2

a2

x

y

xz-trace

yz-trace

parallel to
xy-plane

z

x
y

xz-trace

parallel to 
xy-plane

yz-trace
z

xy-trace
(one point)

x

y

yz-trace

xz-trace
z

xy-trace
(one point)

parallel to
xy-plane

x

y

z

x
y

z

x

y

z Elliptic Cone

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the cone corresponds 
to the variable whose coefficient is
negative. The traces in the coordi-
nate planes parallel to this axis are
intersecting lines.

Plane                         Trace         

x2

a2 �
y2

b2 �
z2

c2 � 0

Elliptic Paraboloid

Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corre-
sponds to the variable raised to the
first power.

Plane                         Trace      

z �
x2

a2 �
y2

b2
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To classify a quadric surface, begin by writing the surface in standard form. Then,
determine several traces taken in the coordinate planes taken in planes that are
parallel to the coordinate planes.

EXAMPLE 2 Sketching a Quadric Surface

Classify and sketch the surface given by 

Solution Begin by writing the equation in standard form.

Write original equation.

Divide by 

Standard form

From the table on pages 814 and 815, you can conclude that the surface is a hyper-
boloid of two sheets with the axis as its axis. To sketch the graph of this surface, it
helps to find the traces in the coordinate planes.

trace Hyperbola

trace No trace

trace Hyperbola

The graph is shown in Figure 11.59.

EXAMPLE 3 Sketching a Quadric Surface

Classify and sketch the surface given by 

Solution Because is raised only to the first power, the surface is a paraboloid. The
axis of the paraboloid is the axis. In the standard form, the equation is

Standard form

Some convenient traces are as follows.

trace Parabola

trace Parabola

parallel to plane Ellipse

The surface is an paraboloid, as shown in Figure 11.60. ■

Some second-degree equations in and do not represent any of the basic
types of quadric surfaces. Here are two examples.

Single point

Right circular cylinder x2 � y2 � 1

 x2 � y2 � z2 � 0

zy,x,

elliptic

y2

4
�

z2

1
� 1�x � 4�:yz-

x � 4z2�y � 0�:xz-

x � y2�z � 0�:xy-

x � y2 � 4z2.

x-
x

x � y2 � 4z2 � 0.

 
y2

4
�

z2

1
� 1�x � 0�:yz-

 
x2

3
�

z2

1
� �1�y � 0�:xz-

 
y2

4
�

x2

3
� 1�z � 0�:xy-

y-

 
y2

4
�

x2

3
�

z2

1
� 1

�12. 
x2

�3
�

y2

4
� z2 � 1 � 0

 4x2 � 3y2 � 12z2 � 12 � 0

4x2 � 3y2 � 12z2 � 12 � 0.

or

816 Chapter 11 Vectors and the Geometry of Space

y

z

Hyperboloid of two sheets:

y2 x2

4 3
−       − z2 = 1

y2 z2

4 1
−       = 1

y2 x2

4 3
−       = 1

4
3

2 1 2

1

2

3

x

Figure 11.59

y

z

x = y2

x = 4z2

Elliptic paraboloid:
x = y2 + 4z2

x

10

4
2

2
−4

y2 z2

4 1
+       = 1

Figure 11.60
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For a quadric surface not centered at the origin, you can form the standard
equation by completing the square, as demonstrated in Example 4.

EXAMPLE 4 A Quadric Surface Not Centered at the Origin

Classify and sketch the surface given by 

Solution Completing the square for each variable produces the following.

From this equation, you can see that the quadric surface is an ellipsoid that is centered
at Its graph is shown in Figure 11.61. ■�2, �1, 1�.

 
�x � 2�2

4
�

�y � 1�2

2
�

�z � 1�2

4
� 1

 �x � 2�2 � 2�y � 1�2 � �z � 1�2 � 4

 �x2 � 4x � 4� � 2� y2 � 2y � 1� � �z2 � 2z � 1� � �3 � 4 � 2 � 1

 �x2 � 4x �  � � 2� y2 � 2y �  � � �z2 � 2z �  � � �3

x2 � 2y2 � z2 � 4x � 4y � 2z � 3 � 0.

11.6 Surfaces in Space 817

y

x

z

1

5

3

−1

(2, −1, 1)

(x − 2)2 (y + 1)2 (z − 1)2

4 2 4
+ + = 1

An ellipsoid centered at 
Figure 11.61

�2, �1, 1�

A computer algebra system can help you visualize a surface in
space.* Most of these computer algebra systems create three-dimensional illusions
by sketching several traces of the surface and then applying a “hidden-line” routine
that blocks out portions of the surface that lie behind other portions of the surface.
Two examples of figures that were generated by Mathematica are shown below.

Elliptic paraboloid Hyperbolic paraboloid

Using a graphing utility to graph a surface in space requires practice. For one
thing, you must know enough about the surface to be able to specify a viewing
window that gives a representative view of the surface. Also, you can often improve
the view of a surface by rotating the axes. For instance, note that the elliptic
paraboloid in the figure is seen from a line of sight that is “higher” than the line of
sight used to view the hyperbolic paraboloid.

z �
y 2

16
�

x2

16
x �

y2

2
�

z2

2

y

x

Generated by Mathematica

z

x

y

Generated by Mathematica

z

TECHNOLOGY

*Some 3-D graphing utilities require surfaces to be entered with parametric equations. For
a discussion of this technique, see Section 15.5.
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Surfaces of Revolution
The fifth special type of surface you will study is called a surface of revolution. In
Section 7.4, you studied a method for finding the of such a surface. You will now
look at a procedure for finding its Consider the graph of the radius function

Generating curve

in the plane. If this graph is revolved about the axis, it forms a surface of revolu-
tion, as shown in Figure 11.62. The trace of the surface in the plane is a circle
whose radius is and whose equation is 

Circular trace in plane:

Replacing with produces an equation that is valid for all values of In a similar
manner, you can obtain equations for surfaces of revolution for the other two axes, and
the results are summarized as follows.

EXAMPLE 5 Finding an Equation for a Surface of Revolution

a. An equation for the surface of revolution formed by revolving the graph of

Radius function

about the axis is

Revolved about the axis

Substitute for 

b. To find an equation for the surface formed by revolving the graph of 
about the axis, solve for in terms of to obtain

Radius function

So, the equation for this surface is

Revolved about the axis

Substitute for 

Equation of surface

The graph is shown in Figure 11.63. ■

x2 � z2 �
1
9y3.

r �y�.1
3 y3�2x2 � z2 � �1

3y3�2�2
y-x2 � z2 � �r�y��2

x �
1
3 y3�2 � r� y�.

yxy-
9x2 � y3

r �z�.1�zx2 � y2 � �1
z�

2

.

z-x2 � y2 � �r�z��2

z-

y �
1
z

z.zz0

z � z0x2 � y2 � �r�z0��2.

r�z0�
z � z0

z-yz-

y � r�z�

equation.
area

818 Chapter 11 Vectors and the Geometry of Space

y

x

(x, y, z)
r z( )

(0, 0, z)

(0, r (z), z)

Circular
cross section

Generating curve
y = r (z)

z

Figure 11.62

x
y

Generating curve
9x2 = y3

x2 + z2 = y31
9

Surface:
z

Figure 11.63

SURFACE OF REVOLUTION

If the graph of a radius function is revolved about one of the coordinate
axes, the equation of the resulting surface of revolution has one of the following
forms.

1. Revolved about the axis:

2. Revolved about the axis:

3. Revolved about the axis: x2 � y2 � �r�z��2z-

x2 � z2 � �r�y��2y-

y2 � z2 � �r�x��2x-

r
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The generating curve for a surface of revolution is not unique. For instance, the
surface

can be formed by revolving either the graph of about the axis or the graph
of about the axis, as shown in Figure 11.64.

Figure 11.64

EXAMPLE 6 Finding a Generating Curve for a Surface of Revolution

Find a generating curve and the axis of revolution for the surface given by

Solution You now know that the equation has one of the following forms.

Revolved about axis

Revolved about axis

Revolved about axis

Because the coefficients of and are equal, you should choose the third form and
write

The axis is the axis of revolution. You can choose a generating curve from either of
the following traces.

Trace in plane

Trace in plane

For example, using the first trace, the generating curve is the semiellipse given by 

Generating curve

The graph of this surface is shown in Figure 11.65. ■

x � 	9 � 3y2.

yz-z2 � 9 � 3y2

xy-x2 � 9 � 3y2

y-

x2 � z2 � 9 � 3y2.

z2x2

y-x2 � z2 � �r�y��2

x-y2 � z2 � �r�x��2

z-x2 � y2 � �r�z��2

x2 � 3y2 � z2 � 9.

x

y

z Generating curve
in yz-plane
z = e−y

x

y

Generating curve
in xy-plane
x = e−y

Surface:
x2 + z2 = e−2y

z

y-z � e�y
y-x � e�y

x2 � z2 � e�2y

11.6 Surfaces in Space 819

Generating curve
in xy-plane

Surface:
x2 + 3y2 + z2 = 9

y

x

z
x =     9 − 3y2

Generating curve
in yz-plane
z =     9 − 3y2

Figure 11.65
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In Exercises 1–6, match the equation with its graph. [The
graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f )

1. 2.

3. 4.

5. 6.

In Exercises 7–16, describe and sketch the surface.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. Think About It The four figures are graphs of the quadric
surface Match each of the four graphs with the
point in space from which the paraboloid is viewed. The four
points are and 

(a) (b)

(c) (d)

Figures for 17

18. Use a computer algebra system to graph a view of the cylinder
from each point.

(a)

(b)

(c)

In Exercises 19–32, identify and sketch the quadric surface. Use
a computer algebra system to confirm your sketch.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

In Exercises 33–42, use a computer algebra system to graph the
surface. (Hint: It may be necessary to solve for and acquire
two equations to graph the surface.)

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–46, sketch the region bounded by the graphs of
the equations.

43.

44.

45.

46. z � 0y � 2z,z � 	4 � x2 � y2,

z � 0x � z � 2,x2 � y2 � 1,

z � 0y � 0,x � 0,y � 	4 � x2,z � 	4 � x2,

z � 2z � 2	x2 � y2,

9x2 � 4y2 � 8z2 � 726x2 � 4y2 � 6z2 � �36

z �
�x

8 � x2 � y2z � 10 � 	
xy


x2 � y2 � e�zx2 � y2 � �2
z�

2

3.25y � x2 � z2z2 � x2 � 7.5y2

z � x2 � 0.5y2z � 2 cos x

z

9x2 � y2 � 9z2 � 54x � 4y � 54z � 4 � 0

16x2 � 9y2 � 16z2 � 32x � 36y � 36 � 0

x2 � 2y2 � 2z2z2 � x2 �
y2

9

3z � �y2 � x2x2 � y2 � z � 0

z � x2 � 4y2x2 � y � z2 � 0

z2 � x2 �
y2

4
� 14x2 � y2 � z2 � 1

�8x2 � 18y2 � 18z2 � 216x2 � y2 � 16z2 � 4

x2

16
�

y2

25
�

z2

25
� 1x2 �

y2

4
� z2 � 1

�10, 10, 10�
�0, 10, 0�
�10, 0, 0�

y2 � z2 � 4

x

z

y

x

yx

z

y

z

�10, 10, 20�.�20, 0, 0�,�0, 20, 0�,�0, 0, 20�,

z � x2 � y2.

z � ey � 0z � sin y � 0

y2 � z2 � 164x2 � y2 � 4

y2 � z � 6x2 � y � 0

x2 � z2 � 25y2 � z2 � 9

z � 2y � 5

4x2 � y2 � 4z � 04x2 � 4y � z2 � 0

y2 � 4x2 � 9z24x2 � y2 � 4z2 � 4

15x2 � 4y2 � 15z2 � �4
x2

9
�

y2

16
�

z2

9
� 1

y
4

5
4

2
3

x

z

y
2

2
1

3

−3

3
4 4

x

z

6

4

2

2
y

x

z

x
y5

−5

4

4

z

y

x

2
4

2

3

4
−3

z

x
y5 6

4

6

3

z
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11.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS

CAS
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In Exercises 47–52, find an equation for the surface of
revolution generated by revolving the curve in the indicated
coordinate plane about the given axis.

47. plane axis

48. plane axis

49. plane axis

50. plane axis

51. plane axis

52. plane axis

In Exercises 53 and 54, find an equation of a generating curve
given the equation of its surface of revolution.

53. 54.

In Exercises 59 and 60, use the shell method to find the volume
of the solid below the surface of revolution and above the

-plane.

59. The curve in the plane is revolved about the 
axis.

60. The curve in the plane is revolved
about the axis.

In Exercises 61 and 62, analyze the trace when the surface 

is intersected by the indicated planes.

61. Find the lengths of the major and minor axes and the coordinates
of the foci of the ellipse generated when the surface is
intersected by the planes given by

(a) and (b)

62. Find the coordinates of the focus of the parabola formed when
the surface is intersected by the planes given by

(a) and (b)

In Exercises 63 and 64, find an equation of the surface satisfying
the conditions, and identify the surface.

63. The set of all points equidistant from the point and the
plane 

64. The set of all points equidistant from the point and the
plane

65. Geography Because of the forces caused by its rotation,
Earth is an oblate ellipsoid rather than a sphere. The equatorial
radius is 3963 miles and the polar radius is 3950 miles. Find an
equation of the ellipsoid. (Assume that the center of Earth is
at the origin and that the trace formed by the plane 
corresponds to the equator.)

66. Machine Design The top of a rubber bushing designed to
absorb vibrations in an automobile is the surface of revolution
generated by revolving the curve in
the -plane about the -axis.

(a) Find an equation for the surface of revolution.

(b) All measurements are in centimeters and the bushing is set
on the -plane. Use the shell method to find its volume.

(c) The bushing has a hole of diameter 1 centimeter through its
center and parallel to the axis of revolution. Find the
volume of the rubber bushing.

67. Determine the intersection of the hyperbolic paraboloid
with the plane Assume

68. Explain why the curve of intersection of the surfaces
and 

lies in a plane.

True or False? In Exercises 69–72, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

69. A sphere is an ellipsoid.

70. The generating curve for a surface of revolution is unique.

71. All traces of an ellipsoid are ellipses.

72. All traces of a hyperboloid of one sheet are hyperboloids.

73. Think About It Three types of classic “topological” surfaces
are shown below. The sphere and torus have both an “inside”
and an “outside.” Does the Klein bottle have both an inside and
an outside? Explain.

Sphere Torus

Klein bottle Klein bottle

2x2 � 6y2 � 4z2 � 3x � 2x2 � 3y2 � 2z2 � 2y � 4

b > 0.�a,
(bx � ay � z � 0.z � y2�b2 � x2�a2

xy

zyz
�0 � y � 2�z �

1
2 y2 � 1

z � 0

xy-
�0, 0, 4�

y � �2
�0, 2, 0�

x � 2.y � 4

z � 8.z � 2

z � 1
2 x2 1 1

4 y2

z-
yz-z � sin y �0 � y � ��

z-
xz-z � 4x � x2

xy

x2 � z2 � cos2 yx2 � y2 � 2z � 0

z-yz-z � ln y

x-xy-xy � 2

x-xz-2z � 	4 � x2

z-yz-z � 2y

y-yz-z � 3y

y-yz-z2 � 4y

Axis of RevolutionCoordinate PlaneEquation of Curve

11.6 Surfaces in Space 821

55. State the definition of a cylinder.

56. What is meant by the trace of a surface? How do you find a
trace?

57. Identify the six quadric surfaces and give the standard form
of each.

WRITING ABOUT CONCEPTS

58. What does the equation represent in the -plane?
What does it represent in three-space?

xzz � x2

CAPSTONE
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■ Use cylindrical coordinates to represent surfaces in space.
■ Use spherical coordinates to represent surfaces in space.

Cylindrical Coordinates
You have already seen that some two-dimensional graphs are easier to represent in
polar coordinates than in rectangular coordinates. A similar situation exists for
surfaces in space. In this section, you will study two alternative space-coordinate
systems. The first, the cylindrical coordinate system, is an extension of polar
coordinates in the plane to three-dimensional space.

To convert from rectangular to cylindrical coordinates (or vice versa), use the
following conversion guidelines for polar coordinates, as illustrated in Figure 11.66.

Cylindrical to rectangular:

Rectangular to cylindrical:

The point is called the pole. Moreover, because the representation of a point
in the polar coordinate system is not unique, it follows that the representation in the
cylindrical coordinate system is also not unique.

EXAMPLE 1 Converting from Cylindrical to Rectangular Coordinates

Convert the point to rectangular coordinates.

Solution Using the cylindrical-to-rectangular conversion equations produces

So, in rectangular coordinates, the point is as shown in
Figure 11.67. ■

�x, y, z� � ��2�3, 2, 3�,
z � 3.

y � 4 sin 
5�

6
� 4 �1

2� � 2

x � 4 cos 
5�

6
� 4 ���3

2 � � �2�3

�r, �, z� � �4, 
5�

6
, 3�

�0, 0, 0�
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11.7 Cylindrical and Spherical Coordinates

THE CYLINDRICAL COORDINATE SYSTEM

In a cylindrical coordinate system, a point in space is represented by an
ordered triple 

1. is a polar representation of the projection of in the plane.

2. is the directed distance from to P.�r, ��z

xy-P�r, ��

�r, �, z�.
P

z � zy � r sin �,x � r cos �,

z � ztan � �
y
x

,r2 � x2 � y2,

x

y

z

(x, y, z)
(r,   , z)θ

θ
θ

θ

θ

P

x

y

Rectangular
coordinates:
x = r cos
y = r sin
z = z

tan    =

r2 = x2 + y2

z = z

y
x

r

Cylindrical coordinates:

Figure 11.66

z

y

x

θ

θ

π
(r,   , z) =   4,      , 3

5
6( (

r

z

P

1

−2

−3

−4

−1
1 2 3 4−1

1

2

3

4

(x, y, z) = (−2    3, 2, 3)

Figure 11.67
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EXAMPLE 2 Converting from Rectangular to Cylindrical Coordinates

Convert the point to cylindrical coordinates.
Solution Use the rectangular-to-cylindrical conversion equations.

You have two choices for and infinitely many choices for As shown in Figure
11.68, two convenient representations of the point are

and in Quadrant I

and in Quadrant III ■

Cylindrical coordinates are especially convenient for representing cylindrical
surfaces and surfaces of revolution with the axis as the axis of symmetry, as shown
in Figure 11.69.

Cylinder Paraboloid Cone Hyperboloid
Figure 11.69

Vertical planes containing the axis and horizontal planes also have simple cylindrical
coordinate equations, as shown in Figure 11.70.

Figure 11.70

y

x

z Horizontal
plane:
z = c

y

x

Vertical
plane:

= cθ

θ = c

z

z-

r2 = z2 + 1

z

y
x

x2 + y2 − z2 = 1
r = z

z

y

x

x2 + y2 = z2

r = 2    z

y
x

z

x2 + y2 = 4z

y

x

z

r = 3
x2 + y2 = 9

z-

�r < 0��2, 
4�

3
, 2�.

�r > 0�2, 
�

3
, 2�

�.r

z � 2

� � arctan ��3 � � n� �
�

3
� n�tan � � �3

r � ±�1 � 3 � ±2

�x, y, z� � �1, �3, 2�
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( , , ) = (1, 3, 2)x  y  z

θ
y

x

=

3

2

1 2 3

3

2

1

r = 2

z = 2

z

θ π
(r,   , z) =   2,    , 2   or   −2,      , 2

3

π
3

π4
3( (( (

Figure 11.68
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EXAMPLE 3 Rectangular-to-Cylindrical Conversion

Find an equation in cylindrical coordinates for the surface represented by each
rectangular equation.

a.

b.

Solution

a. From the preceding section, you know that the graph is an elliptic
cone with its axis along the axis, as shown in Figure 11.71. If you replace

with the equation in cylindrical coordinates is

Rectangular equation

Cylindrical equation

b. The graph of the surface is a parabolic cylinder with rulings parallel to the
axis, as shown in Figure 11.72. By replacing with and with 

you obtain the following equation in cylindrical coordinates.

Rectangular equation

Substitute for and for 

Collect terms and factor.

Divide each side by 

Solve for 

Cylindrical equation

Note that this equation includes a point for which so nothing was lost by
dividing each side by the factor ■

Converting from cylindrical coordinates to rectangular coordinates is less
straightforward than converting from rectangular coordinates to cylindrical coordi-
nates, as demonstrated in Example 4.

EXAMPLE 4 Cylindrical-to-Rectangular Conversion

Find an equation in rectangular coordinates for the surface represented by the
cylindrical equation

Solution

Cylindrical equation

Trigonometric identity

Replace with and with 

Rectangular equation

This is a hyperboloid of two sheets whose axis lies along the axis, as shown in
Figure 11.73. ■

y-

 y2 � x2 � z2 � 1

y.r sin �xr cos � x2 � y2 � z2 � �1

 r2 cos2 � � r2 sin2 � � z2 � �1

 r2�cos2 � � sin2 �� � z2 � 1 � 0

 r2 cos 2� � z2 � 1 � 0

r2 cos 2� � z2 � 1 � 0.

r.
r � 0,

 r � csc � cot �

r. r �
cos �
sin2 �

r. r sin2 � � cos � � 0

 r�r sin2 � � cos �� � 0

x.r cos �yr sin � r2 sin2 � � r cos �

 y2 � x

r cos �,xr2 sin2 �y2z-
y2 � x

 r2 � 4z2.

 x2 � y2 � 4z2

r2,x2 � y2
z-

x2 � y2 � 4z2

y2 � x

x2 � y2 � 4z2
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y

z

4 6

3

4
6

x2 + y2 = 4z2

Rectangular:

r2 = 4z2

Cylindrical:

x

Figure 11.71

Cylindrical:
r = csc    cotθ θ

Rectangular:
y2 = x

y

x

z

2

2

4

1

Figure 11.72

z

2
3

2
3

3

−3

−2

−1

Rectangular:
y2 − x2 − z2 = 1

Cylindrical:
r2 cos 2   + z2 + 1 = 0θ

yx

Figure 11.73
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Spherical Coordinates
In the spherical coordinate system, each point is represented by an ordered triple: the
first coordinate is a distance, and the second and third coordinates are angles. This
system is similar to the latitude-longitude system used to identify points on the 
surface of Earth. For example, the point on the surface of Earth whose latitude is 
North (of the equator) and whose longitude is West (of the prime meridian) is
shown in Figure 11.74. Assuming that the Earth is spherical and has a radius of 4000
miles, you would label this point as

Radius clockwise from down from

prime meridian North Pole

The relationship between rectangular and spherical coordinates is illustrated in
Figure 11.75. To convert from one system to the other, use the following.

Spherical to rectangular:

Rectangular to spherical:

To change coordinates between the cylindrical and spherical systems, use the
following.

Spherical to cylindrical :

Cylindrical to spherical :�r � 0�

�r � 0�

50�80�

�4000, �80�, 50��.

80�
40�

11.7 Cylindrical and Spherical Coordinates 825

x

y

80° W
40° N

Equator

Prime
meridian

z

Figure 11.74

x

y

(  ,   ,   )
(x, y, z)

θ φρ

θ

φ

ρ

P

x

y

r

O

φρr x2 + y2=    sin    =

z

z

Spherical coordinates
Figure 11.75

THE SPHERICAL COORDINATE SYSTEM

In a spherical coordinate system, a point in space is represented by an
ordered triple 

1. is the distance between and the origin,

2. is the same angle used in cylindrical coordinates for 

3. is the angle between the positive axis and the line segment 

Note that the first and third coordinates, and are nonnegative. is the
lowercase Greek letter and is the lowercase Greek letter phi.	rho,


	,


0 � 	 � �.
OP

\

,z-	

r � 0.�


 � 0.P


�
, �, 	�.
P

z � 
 cos 	y � 
 sin 	 sin �,x � 
 sin 	 cos �,

z � 
 cos 	� � �,r2 � 
2 sin2 	,

	 � arccos� z
�x2 � y2 � z2�tan � �

y
x

,
2 � x2 � y2 � z2,

	 � arccos� z
�r2 � z2�� � �,
 � �r2 � z2,
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The spherical coordinate system is useful primarily for surfaces in space that have
a point or center of symmetry. For example, Figure 11.76 shows three surfaces with
simple spherical equations.

Figure 11.76

EXAMPLE 5 Rectangular-to-Spherical Conversion

Find an equation in spherical coordinates for the surface represented by each
rectangular equation.

a. Cone:

b. Sphere:

Solution

a. Making the appropriate replacements for and in the given equation yields the
following.

The equation represents the half-cone, and the equation 
represents the half-cone.

b. Because and the given equation has the following
spherical form.

Temporarily discarding the possibility that you have the spherical equation

or

Note that the solution set for this equation includes a point for which so
nothing is lost by discarding the factor The sphere represented by the equation

is shown in Figure 11.77. ■
 � 4 cos 	

.


 � 0,


 � 4 cos 	.
 � 4 cos 	 � 0


 � 0,


�
 � 4 cos 	� � 0
2 � 4
 cos 	 � 0

z � 
 cos 	,
2 � x2 � y2 � z2

lower
	 � 3�	4upper	 � �	4

	 � �	4 or 	 � 3�	4 tan2 	 � 1


 � 0 
sin2 	
cos2 	

� 1

 
2 sin2 	 � 
2 cos2 	

 
2 sin2 	 �cos2 � � sin2 �� � 
2 cos2 	

 
2 sin2 	 cos2 � � 
2 sin2 	 sin2 � � 
2 cos2 	

 x2 � y2 � z2

zy,x,

x2 � y2 � z2 � 4z � 0

x2 � y2 � z2

y

x

Half-cone:
= cφ 0 < c < π

2 ))

φ = c

z

y
x θ = c

Vertical half-plane:
= cθ

z

Sphere:
= cρ

y

x

c

z
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Rectangular:
x2 + y2 + z2 − 4z = 0 ρ φ

Spherical:
= 4 cos

y

x

z

−2

2

4

11

2

Figure 11.77
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11.7 Cylindrical and Spherical Coordinates 827

11.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS

In Exercises 1–6, convert the point from cylindrical coordinates
to rectangular coordinates.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, convert the point from rectangular coordinates
to cylindrical coordinates.

7. 8.

9. 10.

11. 12.

In Exercises 13–20, find an equation in cylindrical coordinates
for the equation given in rectangular coordinates.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–28, find an equation in rectangular coordinates
for the equation given in cylindrical coordinates, and sketch its
graph.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–34, convert the point from rectangular coordinates
to spherical coordinates.

29. 30.

31. 32.

33. 34.

In Exercises 35– 40, convert the point from spherical coordinates
to rectangular coordinates.

35. 36.

37. 38.

39. 40.

In Exercises 41–48, find an equation in spherical coordinates
for the equation given in rectangular coordinates.

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–56, find an equation in rectangular coordinates
for the equation given in spherical coordinates, and sketch its
graph.

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57–64, convert the point from cylindrical coordinates
to spherical coordinates.

57. 58.

59. 60.

61. 62.

63. 64.

In Exercises 65–72, convert the point from spherical coordinates
to cylindrical coordinates.

65. 66.

67. 68.

69. 70.

71. 72.

In Exercises 73–88, use a computer algebra system or graphing
utility to convert the point from one system to another among
the rectangular, cylindrical, and spherical coordinate systems.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88. �8, ��	6, ����
�3, 3�	4, �	3���
��8.25, 1.3, �4��
���3.5, 2.5, 6��
���2, 11�	6, 3��
��5, 3�	4, �5��
���0, �5, 4�
���5	2, 4	3, �3	2�
���3�2, 3�2, �3�
���3, �2, 2�

�7.5, 0.25, 1���
�20, 2�	3, �	4���
��10, �0.75, 6��
��5, �	9, 8��
���6, �2, �3�
���4, 6, 3�

Spherical           Cylindrical      Rectangular        

�7, �	4, 3�	4��8, 7�	6, �	6�
�5, �5�	6, ���6, ��	6, �	3�
�18, �	3, �	3��36, �, �	2�
�4, �	18, �	2��10, �	6, �	2�

�4, �	2, 3��12, �, 5�
��4, �	3, 4��4, ��	6, 6�
�2, 2�	3, �2��4, �	2, 4�
�3, ��	4, 0��4, �	4, 0�


 � 4 csc 	 sec �
 � csc 	


 � 2 sec 	
 � 4 cos 	

	 �
�

2
	 �

�

6

� �
3�

4

 � 5

x2 � y2 � z2 � 9z � 0x2 � y2 � 2z2

x � 13x2 � y2 � 16

x2 � y2 � 3z2 � 0x2 � y2 � z2 � 49

z � 6y � 2

�6, �, �	2��5, �	4, 3�	4�
�9, �	4, ���12, ��	4, 0�
�12, 3�	4, �	9��4, �	6, �	4�

��1, 2, 1���3, 1, 2�3 �
�2, 2, 4�2 ���2, 2�3, 4�
��4, 0, 0��4, 0, 0�

r � 2 cos �r � 2 sin �

z � r2 cos2 �r2 � z2 � 5

r �
1
2z� � �	6

z � 2r � 3

x2 � y2 � z2 � 3z � 0y2 � 10 � z2

x2 � y2 � 8xy � x2

z � x2 � y2 � 11x2 � y2 � z2 � 17

x � 9z � 4

�2�3, �2, 6��1, �3, 4�
�3, �3, 7��2, �2, �4�
�2�2, �2�2, 4��0, 5, 1�

��0.5, 4�	3, 8��4, 7�	6, 3�
�6, ��	4, 2��3, �	4, 1�
�2, ��, �4���7, 0, 5�
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In Exercises 89–94, match the equation (written in terms of
cylindrical or spherical coordinates) with its graph. [The graphs
are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

89. 90.

91. 92.

93. 94.

In Exercises 99–106, convert the rectangular equation to an
equation in (a) cylindrical coordinates and (b) spherical 
coordinates.

99. 100.

101. 102.

103. 104.

105. 106.

In Exercises 107–110, sketch the solid that has the given
description in cylindrical coordinates.

107.

108.

109.

110.

In Exercises 111–114, sketch the solid that has the given
description in spherical coordinates.

111.

112.

113.

114.

Think About It In Exercises 115–120, find inequalities that
describe the solid, and state the coordinate system used.
Position the solid on the coordinate system such that the
inequalities are as simple as possible.

115. A cube with each edge 10 centimeters long

116. A cylindrical shell 8 meters long with an inside diameter of
0.75 meter and an outside diameter of 1.25 meters

117. A spherical shell with inside and outside radii of 4 inches and
6 inches, respectively

118. The solid that remains after a hole 1 inch in diameter is drilled
through the center of a sphere 6 inches in diameter

119. The solid inside both and

120. The solid between the spheres and
and inside the cone 

True or False? In Exercises 121–124, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

121. In cylindrical coordinates, the equation is a cylinder.

122. The equations and represent the
same surface.

123. The cylindrical coordinates of a point are unique.

124. The spherical coordinates of a point are unique.

125. Identify the curve of intersection of the surfaces (in cylindrical
coordinates) and 

126. Identify the curve of intersection of the surfaces (in spherical
coordinates) and 
 � 4.
 � 2 sec 	

r � 1.z � sin �

�x, y, z�
�x, y, z�

x2 � y2 � z2 � 4
 � 2

r � z

z2 � x2 � y2x2 � y2 � z2 � 9,
x2 � y2 � z2 � 4

�x �
3
2�2

� y2 �
9
4

x2 � y2 � z2 � 9

1 � 
 � 30 � 	 � �	2,0 � � � �,

0 � 
 � 20 � 	 � �	2,0 � � � �	2,

0 � � � 2�, �	4 � 	 � �	2, 0 � 
 � 1

0 � � � 2�, 0 � 	 � �	6, 0 � 
 � a sec 	

0 � � � 2�, 2 � r � 4, z2 � �r2 � 6r � 8

0 � � � 2�, 0 � r � a, r � z � a

��	2 � � � �	2, 0 � r � 3, 0 � z � r cos �

0 � � � �	2, 0 � r � 2, 0 � z � 4

y � 4x2 � y2 � 9

x2 � y2 � 36x2 � y2 � 4y

x2 � y2 � zx2 � y2 � z2 � 2z � 0

4�x2 � y2� � z2x2 � y2 � z2 � 25


 � 4 sec 	r2 � z

	 �
�

4

 � 5

� �
�

4
r � 5

y
x

3

2

−2
12

z

y

x

2

1

2
−2

2

z

π
4

y
x

55

5

z

y

x
55

5

z

y

x

4

−4

4

2

z

y

x

π
4

1 2 3

3

−3 −2

3 2

z

828 Chapter 11 Vectors and the Geometry of Space

95. Give the equations for the coordinate conversion from
rectangular to cylindrical coordinates and vice versa.

96. Explain why in spherical coordinates the graph of is
a half-plane and not an entire plane.

97. Give the equations for the coordinate conversion from
rectangular to spherical coordinates and vice versa.

� � c

WRITING ABOUT CONCEPTS

98. (a) For constants and describe the graphs of the
equations and in cylindrical 
coordinates.

(b) For constants and describe the graphs of the
equations and in spherical 
coordinates.

	 � c� � b,
 � a,
c,b,a,

z � c� � b,r � a,
c,b,a,

CAPSTONE
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In Exercises 1 and 2, let and and (a) write 
and in component form, (b) write as the linear combination
of the standard unit vectors and (c) find the magnitude of 
and (d) find 

1.

2.

In Exercises 3 and 4, find the component form of given its 
magnitude and the angle it makes with the positive -axis.

3. 4.

5. Find the coordinates of the point in the plane four units to
the right of the plane and five units behind the plane.

6. Find the coordinates of the point located on the axis and
seven units to the left of the plane.

In Exercises 7 and 8, determine the location of a point 
that satisfies the condition.

7. 8.

In Exercises 9 and 10, find the standard equation of the sphere.

9. Center: Diameter: 15

10. Endpoints of a diameter:

In Exercises 11 and 12, complete the square to write the equation
of the sphere in standard form. Find the center and radius.

11.

12.

In Exercises 13 and 14, the initial and terminal points of a 
vector are given. (a) Sketch the directed line segment, (b) find
the component form of the vector, (c) write the vector using
standard unit vector notation, and (d) sketch the vector with its
initial point at the origin.

13. Initial point: 14. Initial point:

Terminal point: Terminal point:

In Exercises 15 and 16, use vectors to determine whether the
points are collinear.

15.

16.

17. Find a unit vector in the direction of 

18. Find the vector of magnitude 8 in the direction 

In Exercises 19 and 20, let and and find (a) the
component forms of and (b) and (c) 

19.

20.

In Exercises 21 and 22, determine whether and are 
orthogonal, parallel, or neither.

21. 22.

In Exercises 23–26, find the angle between the vectors.

23.

24.

25.

26.

27. Find two vectors in opposite directions that are orthogonal to
the vector 

28. Work An object is pulled 8 feet across a floor using a force of
75 pounds. The direction of the force is above the horizontal.
Find the work done.

In Exercises 29–38, let and

29. Show that 

30. Find the angle between and 

31. Determine the projection of onto 

32. Find the work done in moving an object along the vector if
the applied force is 

33. Determine a unit vector perpendicular to the plane containing 
and 

34. Show that 

35. Find the volume of the solid whose edges are and 

36. Show that 

37. Find the area of the parallelogram with adjacent sides and 

38. Find the area of the triangle with adjacent sides and 

39. Torque The specifications for a tractor state that the torque on
a bolt with head size inch cannot exceed 200 foot-pounds.
Determine the maximum force that can be applied to the
wrench in the figure.

70°

50°

F

7
8

in.

2 ft

� F �

7
8

w.v

v.u

u � �v � w� � �u � v� � �u � w�.
w.v,u,

u � v � ��v � u�.
w.v

w.
u

u.w

v.u

u � u � �u �2.

w � ��1, 2, 2�.
v � �2, �4, �3�,u � �3, �2, 1�,

30�

u � �5, 6, �3�.

v � �2, �2, 1�u � �1, 0, �3�,
v � ��2, 1, �3�u � �10, �5, 15�,
v � �i � 5ju � 6i � 2j � 3k,

v � 2�cos�2��3�i � sin�2��3�j	
u � 5�cos�3��4�i � sin�3��4�j	

�

v � �16, �12, 24�v � ��1, 4, 5�
u � ��4, 3, �6�u � �7, �2, 3�

vu

P � �2, �1, 3�, Q � �0, 5, 1�, R � �5, 5, 0�
P � �5, 0, 0�, Q � �4, 4, 0�, R � �2, 0, 6�

v � v.u � v,v,u
v � PR

\

,u � PQ
\

�6, �3, 2�.v

u � �2, 3, 5�.

�5, �4, 7�, �8, �5, 5�, �11, 6, 3�
�3, 4, �1�, ��1, 6, 9�, �5, 3, �6�

�3, �3, 8��4, 4, �7�
�6, 2, 0��2, �1, 3�

x2 � y2 � z2 � 10x � 6y � 4z � 34 � 0

x2 � y2 � z2 � 4x � 6y � 4 � 0

�0, 0, 4�, �4, 6, 0�
�3, �2, 6�;

xy < 0yz > 0


x, y, z�

xz-
y-

yz-xz-
xy-

�v� �
1
2, 	 � 225��v� � 8, 	 � 60�

x
v

P � ��2, �1�, Q � �5, �1�, R � �2, 4�
P � �1, 2�, Q � �4, 1�, R � �5, 4�

2u 1 v.
v,j,i

uv
uv � PR

\

,u � PQ
\
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40. Volume Use the triple scalar product to find the volume of the
parallelepiped having adjacent edges 
and 

In Exercises 41 and 42, find sets of (a) parametric equations
and (b) symmetric equations of the line through the two points.
(For each line, write the direction numbers as integers.)

41. 42.

In Exercises 43–46, (a) find a set of parametric equations for the
line, (b) find a set of symmetric equations for the line, and (c)
sketch a graph of the line.

43. The line passes through the point and is perpendicular
to the plane.

44. The line passes through the point and is parallel to the
line given by 

45. The intersection of the planes and

46. The line passes through the point and is perpendicular
to and 

In Exercises 47–50, find an equation of the plane and sketch its
graph.

47. The plane passes through

and 

48. The plane passes through the point and is perpendi-
cular to 

49. The plane contains the lines given by

and

50. The plane passes through the points and and
is perpendicular to the plane 

51. Find the distance between the point and the plane

52. Find the distance between the point and the plane

53. Find the distance between the planes and

54. Find the distance between the point and the line
given by and 

In Exercises 55–64, describe and sketch the surface.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65. Find an equation of a generating curve of the surface of 
revolution 

66. Find an equation of a generating curve of the surface of 
revolution 

67. Find an equation for the surface of revolution generated by
revolving the curve in the -plane about the -axis.

68. Find an equation for the surface of revolution generated by
revolving the curve in the -plane about the 
-axis.

In Exercises 69 and 70, convert the point from rectangular
coordinates to (a) cylindrical coordinates and (b) spherical
coordinates.

69. 70.

In Exercises 71 and 72, convert the point from cylindrical
coordinates to spherical coordinates.

71. 72.

In Exercises 73 and 74, convert the point from spherical
coordinates to cylindrical coordinates.

73.

74.

In Exercises 75 and 76, convert the rectangular equation to
an equation in (a) cylindrical coordinates and (b) spherical
coordinates.

75. 76.

In Exercises 77 and 78, find an equation in rectangular
coordinates for the equation given in cylindrical coordinates,
and sketch its graph.

77. 78.

In Exercises 79 and 80, find an equation in rectangular
coordinates for the equation given in spherical coordinates, and
sketch its graph.

79. 80. 
 � 3 cos �	 �
�

4

z � 4r � 5 cos 	

x2 � y2 � z2 � 16x2 � y2 � 2z

�12, �
�

2
, 

2�

3 

�25, �

�

4
, 

3�

4 


�81, �
5�

6
, 27�3
�100, �

�

6
, 50


��3
4

, 
3
4

, 
3�3

2 
��2�2, 2�2, 2�

x
xz2x � 3z � 1

yyzz2 � 2y

x2 � 2y2 � z2 � 3y.

y2 � z2 � 4x � 0.

y2 � z2 � 16

x2 � z2 � 4

x2

25
�

y2

4
�

z2

100
� 1

x2

16
�

y2

9
� z2 � �1

16x2 � 16y2 � 9z2 � 0

x2

16
�

y2

9
� z2 � 1

y � cos z

y �
1
2z

y � z2

x � 2y � 3z � 6

z � 5 � t.y � 3 � 2t,x � 1 � t,
��5, 1, 3�

z � �3.5x � 3y �
5x � 3y � z � 2

2x � 5y � z � 10.
�3, �2, 4�

6z � 6.2x � 3y �
�1, 0, 2�

2x � y � z � 4.
�2, �2, 1��5, 1, 3�

x � 1
�2

� y � 1 � z � 2.

x � 1
�2

� y � z � 1

n � 3i � j � k.
��2, 3, 1�

�1, 1, �2�.��3, 4, 1�,��3, �4, 2�,

v � ��3, 1, 4�.u � �2, �5, 1�
�0, 1, 4�

x � y � 2z � 3.
3x � 3y � 7z � �4

x � y � z.
�1, 2, 3�

xz-
�1, 2, 3�

�8, 10, 5���1, 4, 3�,�3, 0, 2�,  �9, 11, 6�

w � �j � 2k.
v � 2j � k,u � 2i � j,
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1. Using vectors, prove the Law of Sines: If and are the three
sides of the triangle shown in the figure, then

2. Consider the function 

(a) Use a graphing utility to graph the function on the interval

(b) Find a unit vector parallel to the graph of at the point 

(c) Find a unit vector perpendicular to the graph of at the point

(d) Find the parametric equations of the tangent line to the
graph of at the point 

3. Using vectors, prove that the line segments joining the midpoints
of the sides of a parallelogram form a parallelogram (see figure).

4. Using vectors, prove that the diagonals of a rhombus are
perpendicular (see figure).

5. (a) Find the shortest distance between the point and
the line determined by the points and 

(b) Find the shortest distance between the point and
the line segment joining the points and

6. Let be a point in the plane with normal vector Describe the
set of points in the plane for which is orthogonal to

7. (a) Find the volume of the solid bounded below by the parab-
oloid and above by the plane 

(b) Find the volume of the solid bounded below by the elliptic 

paraboloid and above by the plane 

where 

(c) Show that the volume of the solid in part (b) is equal to 
one-half the product of the area of the base times the
altitude, as shown in the figure.

8. (a) Use the disk method to find the volume of the sphere

(b) Find the volume of the ellipsoid 

9. Sketch the graph of each equation given in spherical coordi-
nates.

(a)

(b)

10. Sketch the graph of each equation given in cylindrical coordi-
nates.

(a)

(b)

11. Prove the following property of the cross product.

12. Consider the line given by the parametric equations

and the point for any real number 

(a) Write the distance between the point and the line as a
function of 

(b) Use a graphing utility to graph the function in part (a). Use
the graph to find the value of such that the distance
between the point and the line is minimum.

(c) Use the feature of a graphing utility to zoom out 
several times on the graph in part (b). Does it appear that
the graph has slant asymptotes? Explain. If it appears to
have slant asymptotes, find them.

zoom

s

s.

s.�4, 3, s�

z � 2t � 1y �
1
2t � 1,x � �t � 3,

�u � v� � �w � z� � �u � v � z�w � �u � v � w�z

z � r2 cos 2	

r � 2 cos 	


 � 2 cos �


 � 2 sin �

x2

a2 �
y2

b2 �
z2

c2 � 1.

x2 � y2 � z2 � r 2.

x

y

Base

Altitude

z

k > 0.

z � k,z �
x2

a2 �
y2

b2

z � 1.z � x2 � y2

�n � PP
\

0�.
�n � PP

\

0�P
n.P0

P2�0, 1, 2�.
P1�0, 0, 1�

Q�2, 0, 0�
P2�0, 1, 2�.P1�0, 0, 1�

Q�2, 0, 0�

�0, 0�.f

�0, 0�.
f

�0, 0�.f

�2 � x � 2.

f �x� � �x

0

�t4 � 1 dt.

a

A

B

C
b

c

sin A
�a�

�
sin B
�b�

�
sin C
�c�

.

cb,a,
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13. A tetherball weighing 1 pound is pulled outward from the pole
by a horizontal force until the rope makes an angle of 
degrees with the pole (see figure).

(a) Determine the resulting tension in the rope and the magni-
tude of when 

(b) Write the tension in the rope and the magnitude of as
functions of Determine the domains of the functions.

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the two functions for

(e) Compare and as increases.

(f) Find (if possible) and Are the 

results what you expected? Explain.

Figure for 13 Figure for 14

14. A loaded barge is being towed by two tugboats, and the magni-
tude of the resultant is 6000 pounds directed along the axis of
the barge (see figure). Each towline makes an angle of 
degrees with the axis of the barge.

(a) Find the tension in the towlines if 

(b) Write the tension of each line as a function of Deter-
mine the domain of the function.

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the tension function.

(e) Explain why the tension increases as increases.

15. Consider the vectors and 
where Find the cross product of the

vectors and use the result to prove the identity

16. Los Angeles is located at North latitude and 
West longitude, and Rio de Janeiro, Brazil is located at 
South latitude and West longitude (see figure). Assume
that Earth is spherical and has a radius of 4000 miles.

(a) Find the spherical coordinates for the location of each city.

(b) Find the rectangular coordinates for the location of each
city.

(c) Find the angle (in radians) between the vectors from the
center of Earth to the two cities.

(d) Find the great-circle distance between the cities. 
Hint:

(e) Repeat parts (a)–(d) for the cities of Boston, located at
North latitude and West longitude, and

Honolulu, located at North latitude and 
West longitude.

17. Consider the plane that passes through the points and 
Show that the distance from a point to this plane is

where and 

18. Show that the distance between the parallel planes
and is

19. Show that the curve of intersection of the plane and the
cylinder is an ellipse.

20. Read the article “Tooth Tables: Solution of a Dental Problem 
by Vector Algebra” by Gary Hosler Meisters in Mathematics
Magazine. (To view this article, go to the website 
www.matharticles.com.) Then write a paragraph explaining
how vectors and vector algebra can be used in the construction
of dental inlays.

x2 � y2 � 1
z � 2y

Distance � �d1 � d2�
�a2 � b2 � c2

 .

ax � by � cz � d2 � 0ax � by � cz � d1 � 0

w � PQ
\

.u � PR
\

, v � PS
\

,

Distance � �u � �v � w��
�u � v �

Q
S.R,P,

157.86�21.31�
71.06�42.36�

s � r	��
s

Los Angeles

x

y

z

Equator

meridian

Rio de Janeiro

Prime

43.23�
22.90�

118.24�34.05�

sin�
 � �� � sin 
 cos � � cos 
 sin �.


 > �.�cos �, sin �, 0�,
v �u � �cos 
, sin 
, 0�

	

	.T

	 � 20�.

	

θ

θ
u

1 lb

θ

lim
	→��2�

 � u �. lim
	→��2�

 T  

	� u �T

0� � 	 � 60�.

	.
uT

	 � 30�.u

	u
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Chapter 11
Section 11.1 (page 771)

1. (a) 3. (a)
(b) (b)

5. 7.
9. (a) and (d) 11. (a) and (d)

(b) (b)
(c) (c)

13. (a) and (d) 15. (a) and (d)

(b)

(b) (c) (c)
17. (a) (b)

(c) (d)

19. 21.

23. (a) (b) (c)
25. 27.

29. 31. 7 33. 5 35.
37. 39.
41. (a) (b) (c) 1 (d) 1 (e) 1 (f) 1
43. (a) (b) (c) (d) 1 (e) 1 (f) 1
45.

47. 49. 51. 53.

55. 57.

59. Answers will vary. Example: A scalar is a single real number
such as 2. A vector is a line segment having both direction and 
magnitude. The vector given in component form, has a
direction of and a magnitude of 2.

61. (a) Vector; has magnitude and direction
(b) Scalar; has only magnitude

63. 65. 67.
69. (a) 71. (a)

(b) (b)

x

y

1 2

1

2
(a)

(b)(1, 1)

x

y

−2 2 4 6 8 10

2

4

6

8

10

(3, 9)

(a)

(b)

±�1��10� �3, �1�±�1��37 ��6, �1�
±�1��10� �1, 3�±�1��37��1, 6�

a �
2
3, b �

1
3a � 1, b � 2a � 1, b � 1

��6
��3, 1�,

�2 cos 4 � cos 2, 2 sin 4 � sin 2��2 � 3�2
2

, 
3�2

2 	
���3, 1��3, 0����5, 2�5��0, 6�

�74 � �5 � �41

u
 � 
v
 � �5 � �41 and 
u � v
 � �74

x

y

u

u + v

v

−1
1 2 3 4 5 6 7

1

2

3

4

5

6

7

�85�2�13�5�2
�5�2

�3�34�34, 5�34�34���17�17, 4�17�17�
�61�3, 5�

4

2

4

−2

6

u + 2w

2w

x

u

y

32

−1

1

−2

−3

3
2

x

u
u

y

�4, 3��3, �3
2�

�18, �7���2, �14��8
3, 6�

x
−v

u

u v−

y

x

−u

y

x
−1 1 2 3 4 5

−1

1

2

3

4

5 (3, 5)

v
v

y

10
3

2
3

2, ( (

x

(3, 5)

v

v

y

35
2

21
2

7
2

, ( (

−3 3 6 9 12 15 18
−3

3

6

9

12

15

18

�2, 10
3 ��21

2 , 35
2 �

x

(−9, −15)

(3, 5)

v

−3v

y

−3−6−9−12−15 3 6

−6

−9

−12

−15

3

6

x

(6, 10)

(3, 5)

v 2v

y

−2 2 4 6 8 10
−2

2

4

6

8

10

��9, �15��6, 10�
v � �i �

5
3jv � 4j�0, 4�

��1, 53�

21

3

2

−1−2
x

v

1
2

, 3( (

3
2

4
3

, ( (

5
3

−1, ( (

y

64

6

4

2

2
x

v

(6, 6)

(0, 4)

(6, 2)

y

v � �2i � 4jv � 3i � 5j
��2, �4��3, 5�

x

(8, 3)

(6, −1)

(−2, −4)

v

−2−4 2 4 8

−6

2

4

6

y

x
−1 1 2 3 4 5

−1

1

2

3

4

5 (3, 5)

(2, 0)

(5, 5)

v

y

u � v � �6, �5�u � v � �2, 4�

4

2

−2

−2

−4

−4−6−8
x

v(−6, 0)

y

5432

1

1

3

2

4

5

x

v

(4, 2)

y

��6, 0��4, 2�
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73. (a) 75.
(b)

77. (a)–(c) Answers will vary.
(d)

79. 1.33, 81. 584.6 lb 83. 228.5 lb
85. (a) (b)

(c) No, the resultant can only be less than or equal to the sum.
87.
89. Tension in cable 

Tension in cable 
91. Horizontal: 1193.43 93. north of west

Vertical: 125.43 882.9 
95. True 97. True 99. False. 

101–103. Proofs 105.

Section 11.2 (page 780)
1.
3. 5.

7. 9. 11. 0
13. Six units above the plane
15. Three units behind the plane
17. To the left of the plane
19. Within three units of the plane
21. Three units below the -plane, and below either quadrant I 

or III
23. Above the plane and above quadrants II or IV, below the

-plane and below quadrants I or III
25. 27. 29. Right triangle
31. Isosceles triangle
33.
35. 37.
39.
41.

Center:
Radius: 5

43.
Center:
Radius: 1

45. A solid sphere with center and radius 6
47. Interior of sphere of radius 4 centered at 
49. (a) 51. (a)

(b) (b)
(c) (c)

53. 55.

57. (a) and (d)

(b) (c)
59.
61. (a) (b)

(c) (d)

63. 65. 67.
69. a and b 71. a 73. Collinear 75. Not collinear

�7
2, 3, 52��6, 12, 6���1, 0, 4�

x

1
2

3

−3
−2

−2
−3

2
1

3
y

2

1

−2

−1

−3

3

z

〈0, 0, 0〉

x

1

−3
−2

−2
−3

2
3

y

2

−2

−3

3

z

3
2〈   , 3, 3〉

x

3
2

1

−3
−2

−2
−3

2
3

y

2

−2

−3

3

z

〈−1, −2, −2〉

x

y
21

1
−2

2
3

4

2

3

4

5

z

〈2, 4, 4〉

�3, 1, 8�
v � 4i � j � k�4, 1, 1�

x

y4
2

−2

2

4

2

3

4

5

z

(−1, 2, 3)
(3, 3, 4)

(0, 0, 0)

(4, 1, 1)
v

u �
1
�2

��1, 0, �1�u �
1

�38
�1, �1, 6�


v
 � �2
v
 � �38
v � ��1, 0, �1�v � �1, �1, 6�

x

y4
3

2
1

1

−3

−2

2
3

2

1

3

4

5

z

〈−3, 0, 3〉

x

y43
2

1
1

−3

−2

2
3

2

1

3

4

5

z

〈−2, 2, 2〉

v � �3i � 3kv � �2i � 2j � 2k
��3, 0, 3���2, 2, 2�

�2, �3, 4�
�0, 0, 0�

�1
3, �1, 0�

�x �
1
3�2

� �y � 1�2 � z2 � 1

�1, �3, �4�
�x � 1�2 � �y � 3�2 � �z � 4�2 � 25
�x � 1�2 � �y � 3�2 � �z � 0�2 � 10

�x � 0�2 � �y � 2�2 � �z � 5�2 � 4�3
2, �3, 5�

�0, 0, 9�, �2, 6, 12�, �6, 4, �3�
�41, �41, �14;

7, 7�5, 14;�61�69
xy

orxy-

xy
xz-

xz-
yz-

xy-
�12, 0, 0���3, 4, 5�

x

y32

−3

1

4

1
2

3

3

2
1

−2

−3

z

(5, −2, 2)

(5, −2, −2)
x

y432

4

1
2

3

3

4
5
6

z

(2, 1, 3) (−1, 2, 1)

B��1, �2, 2�A�2, 3, 4�,

x2 � y2 � 25

ai � bj
 � �2�a�

km�hft�sec
38.3�ft�sec

BC � 1958.1 lb
AC � 2638.2 lb

��4, �1�, �6, 5�, �10, 3�

� � 180�� � 0�

71.3�,10.7�,132.5�

direction � �8.26�Magnitude � 63.5,

x

y

−1 1 2 3 4 5

1

2

3

4
(3, 4)

(a)
(b)

±1
5 �3, 4�

���2�2, �2�2�±1
5 ��4, 3�
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77.

Because the given points form the 
vertices of a parallelogram.

79. 0 81. 83.
85. (a) (b)
87. (a) (b)
89. (a)–(d) Answers will vary.

(e)

91. 93. 95.
97. 99.

101. (a) (b)
(c)
(d) Not possible

103. is directed distance to plane.
is directed distance to plane.
is directed distance to plane.

105. 107.
109. (a)

(b)

(c) (d) Proof (e) 30 in.

111.
113. Tension in cable 

Tension in cable 
Tension in cable 

115.

Section 11.3 (page 789)
1. (a) 17 (b) 25 (c) 25 (d) (e) 34
3. (a) (b) 52 (c) 52 (d) (e)
5. (a) 2 (b) 29 (c) 29 (d) (e) 4
7. (a) 1 (b) 6 (c) 6 (d) (e) 2
9. 20 11. 13.

15. 17.
19. Neither 21. Orthogonal 23. Neither
25. Orthogonal 27. Right triangle; answers will vary.
29. Acute triangle; answers will vary.
31. 33.

35.
37.
39. Magnitude: 124.310 lb

41. 43. (a) (b)
45. (a) (b) 47. (a) (b)

49. (a) (b)
51. See “Definition of Dot Product,” page 783.
53. (a) and (b) are defined. (c) and (d) are not defined because it is

not possible to find the dot product of a scalar and a vector or to
add a scalar to a vector.

55. See Figure 11.29 on page 787.
57. Yes.

59. $12,351.25; Total revenue 61. (a)–(c) Answers will vary.
63. Answers will vary. 65.
67. Answers will vary. Example: and 
69. Answers will vary. Example: and 
71. (a) 8335.1 lb (b) 47,270.8 lb
73. 425 ft-lb 75. 2900.2 km-N
77. False. For example, and 

but 
79.
81. (a)

(b) To at 
To at 
To at 
To at 

(c) At 
At �0, 0�: � � 90�

�1, 1�: � � 45�

�0, ±1�(0, 0�:y � x 1�3

�±1, 0��0, 0�:y � x2

�±3�10�10, ±�10�10��1, 1�:y � x 1�3

�±�5�5, ±2�5�5��1, 1�:y � x2

�0, 0�, �1, 1�
arccos�1��3� � 54.7�

�2, 3� 	 �1, 4�.
�1, 1� 
 �1, 4� � 5,�1, 1� 
 �2, 3� � 5

��2, 0, �3��2, 0, 3�
��12, �2��12, 2�

u

 
u
 � 
v


 
1


v

�

1

u


 �u 
 v� 
v


v
2 � �v 
 u� 
u



u
2

 
 u 
 v

v
2 v 
 � 
 v 
 u


u
2 u 


�2, � 8
25, 6

25��0, 33
25, 44

25�
�2, 1, 1���2, 2, 2���

1
2, 52��5

2, 12�
�4, �1��2, 8�� � 45�� � 45�,
 � 90�,

� � 96.53�� � 61.39�,
 � 29.48�,


 � 100.5�, � � 24.1�, � � 68.6�


 � 43.3�, � � 61.0�, � � 119.0�

cos � � �2��13cos � �
2
3

cos � � 3��13cos � �
2
3

cos 
 � 0cos 
 �
1
3

arccos��8�13�65� � 116.3�arccos��2�3� � 61.9�

arccos
�1��5�2�� � 98.1���2
i � k

�0, 12, 10�
�52�78, �52��26

��17, 85�

�x �
4
3�2

� � y � 3�2 � �z �
1
3�2

�
44
9

226.521 NAD:
157.909 NAC:
202.919 NAB:

��3�3��1, 1, 1�

0 100
0

30 L = 18

T = 8

L 20 25 30 35 40 45 50

T 18.4 11.5 10 9.3 9.0 8.7 8.6

L > 18T � 8L��L2 � 182,
0�x � x0�2 � � y � y0�2 � �z � z0�2 � r 2

xy-z0

xz-y0

yz-x0

a � 1, a � b � 2, b � 1
a � 0, a � b � 0, b � 0

1

1

1

v

u

yx

z

�0, �3, ±1�

�2, �1, 2�

x

−2

−2
−1

2

1
y

2

1

−2

−1

z

〈0,     3, 1〉

〈0,     3, −1〉

�1, �1, 12��0, 10��2, 10��2 �±7
3


v
 � 9.014

u
 � 5.099

u � v
 � 8.732
u � v � �4, 7.5, �2�

��1��38��3, 2, �5��1��38��3, 2, �5�
�

1
3�2, �1, 2�1

3�2, �1, 2�
�14�34

AB
\

� CD
\

 and BD
\

� AC
\

,
AC

\

� ��2, 1, 1�
BD

\

� ��2, 1, 1�
CD

\

� �1, 2, 3�
AB

\

� �1, 2, 3�
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83. (a)
(b) To at 

To at 
To at 

To at 
(c) At 

At 
85. Proof
87. (a) (b) (c) (d)

89–91. Proofs

Section 11.4 (page 798)
1. 3.

5.

7. (a) 9. (a)
(b) (b)
(c) (c)

11. 13. 15.
17. 19.

21.

23.

25. Answers will vary. 27. 1 29. 31.

33. 35. 37. ft-lb

39. (a)

(b)
(c) This is what should be expected. When 

the pipe wrench is horizontal.
41. 1 43. 6 45. 2 47. 75
49. At least one of the vectors is the zero vector.
51. See “Definition of Cross Product of Two Vectors in Space,” page

792.
53. The magnitude of the cross product will increase by a factor 

of 4.
55. False. The cross product of two vectors is not defined in a two-

dimensional coordinate system.
57. False. Let and 

Then but 
59–67. Proofs

Section 11.5 (page 807)
1. (a)

(b)
(There are many correct answers.) The components of the
vector and the coefficients of are proportional because the
line is parallel to 

(c)
3. (a) Yes (b) No

5. 3, 1, 5

7.

9.

z � 1 � t
y � �2t

3, �2, 1
x � 1

3
�

y
�2

�
z � 1

1
x � 1 � 3t

z � 3 � 2t
y � 4t

2, 4, �2
x � 2

2
�

y
4

�
z � 3
�2

x � �2 � 2t

z � 5t
y � t

x
3

� y �
z
5

x � 3t

Numbers       Equations �b�                     Equations �a�    
DirectionSymmetricParametric

��1
5, 12

5 , 0�, �7, 0, 12�, �0, 73, 13�
PQ

\

.
t

P � �1, 2, 2�, Q � �10, �1, 17�, PQ
\

� �9, �3, 15�

y

x

z

v 	 w.u � v � u � w � 0,
w � ��1, 0, 0�.v � �1, 0, 0�,u � �1, 0, 0�,

� � 90�,� � 90�;
42�2 � 59.40

0
0

180

100

y = 84 sinθ

84 sin �

10 cos 40� � 7.66
�16,742

2
11
2

9�56�5

��3.6, �1.4, 1.6�, ��
1.8

�4.37
, �

0.7
�4.37

, 
0.8

�4.37	
��73.5, 5.5, 44.75�, ��

2.94
�11.8961

, 
0.22

�11.8961
, 

1.79
�11.8961	

x

y

v

u

z

4
64

1
2

3

1

3
2

4
5
6

x

y

v

u
4

64

1
2

3

1

3
2

4
5
6

z

��2, 3, �1���1, �1, �1��0, 0, 54�
00
�17i � 33j � 10k�20i � 10j � 16k
17i � 33j � 10k20i � 10j � 16k

x y

−1

i

k− j

z

1
1

1

−1

�j

x y

i

j

k

z

1
1

1

−1

i

x y

i

j

−k
1

1

1

−1

z�k

109.5�60�k�2

k

k k yx

z

(k, 0, k)

(k, k, 0)

(0, k, k)

��1, 0�: � � 53.13�

�1, 0�: � � 53.13�

�±�5�5, �2�5�5�(�1, 0�:y � x2 � 1

�±�5�5, ±2�5�5���1, 0�:y � 1 � x2

�±�5�5, ±2�5�5��1, 0�:y � x2 � 1
�±�5�5, �2�5�5��1, 0�:y � 1 � x2

��1, 0�, �1, 0�
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11.

13. Not possible

15. 17. 19.

21.

23.
25.
27. and is parallel to 29. and are identical.
31. 33. Not intersecting
35.

37. (a)

(There are many correct answers.)
(b)

The components of the cross product are proportional to 
the coefficients of the variables in the equation. The cross
product is parallel to the normal vector.

39. (a) Yes (b) Yes 41.
43. 45.
47. 49. 51.
53. 55. 57.
59.

61. 63.
65. Orthogonal 67. Neither; 69. Parallel
71. 73.

75. 77.

79. 81.

83. and are parallel. 85. and is parallel to 
87. The planes have intercepts at and for

each value of 
89. If is the plane; If the plane is parallel to

the axis and passes through and 
91. (a)

(b)

93. The line does not lie in the plane.
95. Not intersecting 97. 99.

101. 103. 105.
107. 109.
111. Parametric equations: and 

Symmetric equations:

You need a vector parallel to the line and a point
on the line.

113. Simultaneously solve the two linear equations representing the
planes and substitute the values back into one of the original
equations. Then choose a value for and form the corresponding
parametric equations for the line of intersection.

115. (a) Parallel if vector is a scalar multiple of

(b) Perpendicular if 
117.
119. Sphere:
121. (a)

The approximations are close to the actual values.
(b) Answers will vary.

Year 2003 2004 2005

z (approx.) 5.66 5.56 5.56

Year 1999 2000 2001 2002

z (approx.) 6.25 6.05 5.94 5.76

�x � 3�2 � �y � 2�2 � �z � 5�2 � 16
cbx � acy � abz � abc

� � ��2.a1a2 � b1b2 � c1c2 � 0;
� � 0.�a2, b2, c2�;

�a1, b1, c1�

t

P�x1, y1, z1�
v � �a, b, c�

x � x1

a
�

y � y1

b
�

z � z1

c

z � z1 � cty � y1 � bt,x � x1 � at,
�66�37�3�3

�2533�1727�94�1882�26�13
11�6�66�14�7

�2, �3, 2�;
z � 1 � 2t
y � 1 � t
x � 2
� � 65.91�

�0, 1, �c�.�0, 0, 0�x-
c 	 0,xy-z � 0c � 0,

c.
�0, 0, c��0, c, 0�,�c, 0, 0�,

P2.P1 � P4P2P1

Generated by Maple

y

x

1

−2

−12

z

yx

2
4

6

−6

2
4

6

Generated by Maple

z

x y5
5

3

z

(5, 0, 0)yx

z

(0, 0, 6)

(6, 0, 0)
8

8

8

x

y−1

−4

3

3

2

z

(0, −4, 0)

(2, 0, 0)

4
3 ((0, 0, 

x
y

6

6

4

6

4

z

(0, 0, 2)

(0, 6, 0)

(3, 0, 0)

83.5�

9x � 3y � 2z � 21 � 0x � z � 0

x
y

6 8

2

10

2

2

4
6

z

(−7, 10, 0)

0, −   , −      7
2

1
2 )) ) )−   , 0, −      10

3
1
3

−4
−6

−8

y � z � �17x � y � 11z � 5x � y � z � 5
z � 34x � 3y � 4z � 103x � 19y � 2z � 0

2x � y � 2z � 6 � 02x � 3y � z � 10
y � 3 � 0

PQ
\

� PR
\

� ��4, 3, 6�

PQ
\

� �0, �2, 1�, PR
\

� �3, 4, 0�
P � �0, 0, �1�, Q � �0, �2, 0�, R � �3, 4, �1�

�7, 8, �1�

x y

6
8

10

4

2

4

−8

−
4

6
8

10

(7, 8, −1)

z

�2, 3, 1�; cos � � 7�17�51
L3L1L3.L1 � L2

v � �4, 2, 1�P�7, �6, �2�;
v � ��1, 2, 0�P�3, �1, �2�;

z � 2 � t
y � 1 � t
x � 2 � t

z � �4 � 3tz � 4 � tz � 4 � t
y � �3 � ty � 3 � 2ty � 3
x � 5 � 2tx � 2 � 3tx � 2

z � 6
y � �2 � 2t

�10, 2, 0x � 7 � 10t
z � �2 � 9t
y � �3 � 11t

17, �11, �9
x � 5

17
�

y � 3
�11

�
z � 2
�9

x � 5 � 17t

Numbers       Equations �b�                  Equations �a�   
DirectionSymmetricParametric
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123. (a)
(b) (c) The distance is never zero.

(d) 5 in.

125. 127. 129. True 131. True
133. False. Plane and plane 

are perpendicular to plane but are not
parallel.

Section 11.6 (page 820)
1. c 2. e 3. f 4. b 5. d 6. a
7. Plane 9. Right circular cylinder

11. Parabolic cylinder 13. Elliptic cylinder

15. Cylinder 17. (a)
(b)
(c)
(d)

19. Ellipsoid 21. Hyperboloid of one sheet

23. Hyperboloid of two sheets 25. Elliptic paraboloid

27. Hyperbolic paraboloid 29. Elliptic cone

31. Ellipsoid 33.

35. 37.

39. 41.

43. 45.

47. 49. 51.
53.
55. Let be a curve in a plane and let be a line not in a parallel

plane. The set of all lines parallel to and intersecting is
called a cylinder. is called the generating curve of the cylinder,
and the parallel lines are called rulings.

57. See pages 814 and 815. 59.
61. (a) Major axis: (b) Major axis:

Minor axis: 4 Minor axis: 8
Foci: Foci:

63. Elliptic paraboloid
65.
67. 69. True

71. False. A trace of an ellipsoid can be a single point.
x � at, y � bt � ab2, z � 2abt � a2b2

x � at, y � �bt, z � 0;
x2�39632 � y2�39632 � z2�39502 � 1
x2 � z2 � 8y;

�0, ±4, 8��0, ±2, 2�

8�24�2
128��3

C
CL

LC
�or x � �2z �y � �2z

y 2 � z2 � 4�x24x2 � 4y 2 � z2x2 � z2 � 4y

x
y32

4

2

3

3

z

x
y

1
2

2

3

2

−2

−2

z

x

6

6

4

2

2

−6

−6

−4

−2

z

y
y

x

12

88

−8 −4

z

x y4

4

4

z

yx

2 2

−2
−2

2

z

x
y4

2

1

1

2

2

−2

z

y
x 2π 

3

3

z

x 

y

1

1

3

−3

−1

z

x y2 23 3

3

z

x
y3 4

2
1

−3

3

2

1

3

−3

−2

z

x 

y

3

3 
2

−3

z 

x y3

2

−2
−3

3

2

3

−3

−2

z

x
y2

2

2

z

�0, 20, 0�
�0, 0, 20�
�10, 10, 20�

x

y
3

3

4

2

1

z

�20, 0, 0�

x 
y

2 3 
3 

2 

3

z 

−3 

x
y

4

4

3

3

2

4

z

x y 4 
7 6 

4 

z 

x

3

2

1

−1

−2

−3

1

z

2

4
5 y

3
2

1

−2
−3

2x � 3y � z � 3
5x � 2y � 4z � 17x � y � 11z � 5

��1
2, �9

4, 14��77
13, 48

13, �23
13�

15
0

0

15

�70 in.
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73. The Klein bottle does not have both an “inside” and an “outside.”
It is formed by inserting the small open end through the side of
the bottle and making it contiguous with the top of the bottle.

Section 11.7 (page 827)
1. 3. 5.

7. 9. 11.
13. 15. 17.
19.
21. 23.

25. 27.

29. 31. 33.
35. 37. 39.
41. 43.
45. 47.
49. 51.

53. 55.

57. 59.
61. 63.
65. 67.
69. 71.

73.
75.
77.

79.

81.

83.
85.
87.
89. d 90. e 91. c 92. a 93. f 94. b
95. Rectangular to cylindrical:

Cylindrical to rectangular:

97. Rectangular to spherical:

Spherical to rectangular:

99. (a) (b)
101. (a) (b)
103. (a) (b)
105. (a)

(b)
107. 109.

111. 113.

115. Rectangular: 117. Spherical:

119. Cylindrical:
121. False. represents a cone.
123. False. See page 823. 125. Ellipse

Review Exercises for Chapter 11 (page 829)
1. (a) (b) (c) (d)

3. 5. ��5, 4, 0�v � �4, 4�3 �
v � �4, 2�

10i2�5u � 3i � ju � �3, �1�

r � z
0 � � � �r � 3 cos �,r2 � z2 � 9,

0 � z � 10
0 � y � 10

4 � � � 60 � x � 10

x

y

z

2

2

2

x 

y 

30 ° 

z 

a 

x y
a a 

−a − a 

a

z

x

y2
3

1

2 3

5

3

2

z

�2 � 9 csc2 ���cos2 � � sin2 ��
r 2 � 9��cos2 � � sin2 ��

� � 4 sin ��sin � � 4 sin � csc �r � 4 sin �
� � 2 cos �r 2 � �z � 1�2 � 1

� � 5r 2 � z2 � 25
x � � sin � cos �, y � � sin � sin �, z � � cos �

�2 � x2 � y2 � z2, tan � � y�x, � � arccos�z��x2 � y2 � z2�

x � r cos �, y � r sin �, z � z

r 2 � x2 � y2, tan � � y�x, z � z

�3, 3��4, ��3��2.598, 2.356, 1.5) ��1.837, 1.837, 1.5�
�6.946, 5.642, 0.528���3.5, 2.5, 6��2.804, �2.095, 6�
�7.071, 2.356, 2.356��5, 3��4, �5���3.536, 3.536, �5�
2.058��1.5�
�3.206, 0.490,�2.833, 0.490,�5

2, 43, �3
2�

1.064��0.588, 2�
�4.123, �0.588,�3.606,�3, �2, 2�

14.142�14.142�
�20, 2��3, ��4��14.142, 2.094,��7.071, 12.247,
�9.434, 0.349, 0.559��5, ��9, 8��4.698, 1.710, 8�
�7.810, 0.983, 1.177��7.211, 0.983, 3��4, 6, 3�
Spherical                 Cylindrical        Rectangular         

�4, 7��6, 4�3��3�3, ���6, 3�
�36, �, 0��10, ��6, 0�

�13, �, arccos
5�13���2�13, ���6, arccos
3��13 ��
�4�2, ��2, ��4��4, ��4, ��2�

x y 
1

2
1

2

1 

2

− 2 

−2 −2

− 1 

z 

x
y

3 3
2

1
2

5

4

3

2

−2 −3

z

x2 � y 2 � 1x2 � y 2 � �z � 2�2 � 4

x 

y

2 
1 1

2 

2

−2
−1

− 1 

−1

− 2 

z

x
y 

6 5 

5 6 

5 
6 

−6

z 

3x2 � 3y 2 � z2 � 0x 2 � y2 � z2 � 25
tan2 � � 2� � 4 csc �

� � 7� � 2 csc � csc �
�5

2, 52, �5�2�2��0, 0, 12���6, �2, 2�2 �
�4, ��6, ��6��4�2, 2��3, ��4��4, 0, ��2�

x

y1
2 2

1

2

−2

−2

−1

z

x y

3
3 

3

−3

z

x2 � y 2 � 2y � 0x2 � y 2 � z2 � 5

x

y

2 1

2

1

2

−2

−2

z

x 
y 3 4 4 3 

3 

−3 

2 

z 

x � �3y � 0x2 � y 2 � 9
r2 sin2 � � 10 � z2

r � sec � tan �r2 � z2 � 17z � 4
�2, ��3, 4��2�2, ���4, �4��5, ��2, 1�
��2�3, �2, 3��3�2�2, 3�2�2, 1���7, 0, 5�

A120 Answers to Odd-Numbered Exercises

1053714_ans_11.qxp  10/27/08  3:55 PM  Page A120

Copyright 2010 Cengage Learning, Inc. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

Licensed to:



7. Above the -plane and to the right of the -plane or below the
-plane and to the left of the -plane

9.
11.

Center:
Radius: 3

13. (a) and (d) (b)
(c)

15. Collinear 17.
19. (a) (b) 3 (c) 45

21. Orthogonal 23. 25.

27. Answers will vary. Example:
29. 31.
33. or 
35. 4 37. 39.
41. (a)

(b)
43. (a) (b) None

(c)

45. (a) (b)
(c)

47. 49.

51. 53.
55. Plane 57. Plane

59. Ellipsoid 61. Hyperboloid of two sheets

63. Cylinder

65. Let and revolve around the axis.
67.
69. (a) (b)

71.

73.
75. (a) (b)

77. 79.

P.S. Problem Solving (page 831)
1–3. Proofs 5. (a) (b)
7. (a) (b)

(c)

9. (a) (b)

11. Proof

x

y

z

3
2

1

−2

−2
−3

3
2

1

x

y

z

3

−3

2

−2

3

 V �
1
2�area of base�height

 V �
1
2��ab�k 2

1
2��abk�k��2

�5 � 2.243�2�2 � 2.12

3 4
4

3
2

1

−3

3

x

y

z

23

3

x
y

z

x � y�x �
5
2�2

� y2 �
25
4

� � 2 sec 2� cos � csc2 �r2 cos 2� � 2z
�25�2�2, ���4, �25�2�2�
�50�5, ���6, arccos
1��5��

�2�5, 3��4, arccos
�5�5���4, 3��4, 2�
x2 � z2 � 2y

x-y � 2�x

x y

z

2

2

−2

x

y
5 5

2

−2

z

x

y

5
4

2

−2

−4

z

x

y

6

2

2

z

x

y

6

3

3
(0, 0, 2)

(6, 0, 0)

(0, 3, 0)

z

�35�78
7

x y

2

−2

−4

−2

4

2

−2

−4

2

4
4

z

x y

−2

−4

−4

−2

2

−2

2

4
4

z

x � 2y � 127x � 4y � 32z � 33 � 0

x

1
2

3
4

2

3

4

32 4−2

−3
−4

−3

−2

−4

−3−4

z

x � y � 1, z � 1x � t, y � �1 � t, z � 1

x y

2

−2

−2

−4

−4

4

2

−4

4
4

z

x � 1, y � 2 � t, z � 3
�x � 3��6 � y�11 � �z � 2��4
x � 3 � 6t, y � 11t, z � 2 � 4t

100 sec 20� � 106.4 lb�285
�1��5��2i � j��1��5���2i � j�

��
15
14, 57, � 5

14�� 
u
2 u 
 u � 14
��6, 5, 0�, �6, �5, 0�

�� � arccos��2 ��6
4 � � 15�

u � ��1, 4, 0�, v � ��3, 0, 6�
�1��38��2, 3, 5�

u � 2i � 5j � 10k

x

y
321

54
5

3

1
2
3

−2

−9
−10

−8

z

(2, −1, 3)

(4, 4, −7)
(2, 5, −10)

u � �2, 5, �10�

�2, 3, 0�
�x � 2�2 � � y � 3�2 � z2 � 9
�x � 3�2 � �y � 2�2 � �z � 6�2 �

225
4

xzxy
xzxy
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� 40� 50� 60�

T 1.3054 1.5557 2

�u� 0.8391 1.1918 1.7321

� 0� 10� 20� 30�

T 1 1.0154 1.0642 1.1547

�u� 0 0.1763 0.3640 0.5774

13. (a) Tension: lb
Magnitude of lb

(b)
(c)

(d) (e) Both are increasing functions.

(f) and 

Yes. As increases, both increase.
15. Proof

17.

19. Proof

 � �w 	 �u 
 v��
�u 
 v�

� ��u 
 v� 	 w�
�u 
 v�

� �u 	 �v 
 w��
�u 
 v�

 D � �PQ
\

	 n�
�n�

�0, 0, cos � sin � � cos � sin �	;
T and �u�


lim

→�
2�

 �u� � �lim

→�
2�

 T � �

0 60
0

T

⎜⎜u ⎜⎜

2.5

T � sec 
; �u� � tan 
; Domain: 0� � 
 � 90�

�3
3 � 0.5774u:
2�3
3 � 1.1547
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