So, you basically didn’t study and now you’re in the final and you
hope to pass this test and save your miserable grade... And you
expect this cheat sheet to save you!? Well, I sincerely hope it
does.

Slacker. ;)

Registers:
A - One byte register
One byte register
Two byte register (A and B combined to make A:B)
Two byte register
Two byte register

KX OW
1

Immediate vs. Extended mode:
Immediate values are marked with a # symbol. They also are
different instructions when assembled.

EX)
LDAA #S$S00 Loads $00 into A
LDAA $2000 ILoads the data at $2000 into A

Variable declarations:
EX)
array DB $00,$01,502,$03

Remember: Variable names are replaced by their addresses in
memory when the program is assembled.

Constants:
EX)
ZERO EQU $00

Remember: Every instance of “ZERO” in the program will be
replaced with a “$00”. So use #s when necessary.

Stacks:
Stacks start from a memory location and move up.

EX) Instruction Stack pointer Notes
LDS #$2000 $2000 Set SP to $2000
PSHA S1FFF Pushed one byte...
PSHD S1FFD Pushed two bytes...

Remember: When pushing a two byte accumulator on to the
stack, the low order byte is pushed first. (ie: The data in
B is pushed, then the data in A is pushed when pushing D.)

The CCR:

The bits look like:
SXHINZVC
S - Dunno
X - Dunno
H - Dunno
I - Dunno
N - The negative bit
Z - The zero bit
V - The overflow bit
C - The carry bit

Notes:

The N bit is set when an operation results in a
negative number.

The Z bit is set when an operation results in a
zero.

The V bit is set when an operation results in an
overflow.

The C bit is set when an operation results in a
carry.

Comparison and Branching:
EX)
LDAA #$33
CMPA #SOF

BGE - Is $33 >= $0F? - Yes, branch
BLE - Is $33 <= $0F? - No

BGT - Is $33 > SO0F? - Yes, branch
BLT - Is $33 < $SO0F? - No
BEQ - Is $33 == SO0F? - No
BNE - Is $33 != $0F? - Yes, branch

Unit conversion:

Binary to Hex and Hex to Binary:
Simply, every hex “digit” equates to four binary
“digits”:

- 0000
- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
1000
- 1001
- 1010
- 1011
- 1100
- 1101
- 1110
- 1111

HHOQEMP OWooJoUuld WN - O
|

EX)
AF = 1010 1111

Remember: The most significant bit (128) in a signed
value is actually -128.

Decimal to Binary:

The principle is to cram as many high value bits in as
possible.

(The example is long and thus, on the next page.)

EX)
94 = 0 (128 does not fit in 94)

1 (64 does fit in 94) (94-64=30)
0 (32 does not fit in 30)

1 (16 does fit in 30) (30-16=14)
1 (8 does fit in 14) (14-8=6)

1 (4 does fit in 6) (6-4=2)

1 (2 does fit in 2) (2-2=0)
(LSB)--> 0 (1 does not fit in 0)

Thus, 94 = 01011110

Remember: The most significant bit (128) in a signed
value is actually -128.

Decimal to Binary:
Each bit is a power of two, add up the bits,
multiplying them by the powers of two.

EX)
01011110

128(0) + 64(1) + 32(0) + 16(1) + 8(1) +
4(1) + 2(1) + 1(0)
94

Remember: The most significant bit (128) in a signed
value is actually -128.

Decimal to Hex/Hex to Decimal:
I recommend you first convert into binary, then to the
desired type.

EX)
Hex -> Binary -> Decimal
Decimal -> Binary -> Hex

Remember: The most significant bit (128) in a signed
value is actually -128.

2’'s compliment:
Known as “flip and add one”. You can also subtract from S$FF
(or all 1ls in binary) to flip.

EX)
00111111 (63)
(Flip ‘em)

11000000 (-64) (-128+64)

11000000
+ 00000001

11000001 (-63)

Binary Addition and Subtraction:
Addition:
It's easy, just add each column and carry if
necessary.

EX)
1 <---Carry out
11001011
+ 10010010

1 01011101

Subtraction:
This is a bit more difficult, you must subtract each
column, and barrow from a higher order bit if
necessary, When you do barrow, remember that you are
now subtracting 10 - 1, (2 - 1 in decimal) which
results in 1.

EX)
1 <---Carry in
11001011
- 10100010

00101001

Bit shifting:
Logical shift left:
All bits are shifted to the left, with a zero being
introduced in the lowest order bit, and the highest
order bit spills over into the carry bit.

[CI<--[71061[51[41[31[2]1[1][0]<--[ZeroO]

It can also be thought of as “multiply by 2” for both
signed and unsigned values. As such, it is also the
same as arithmetic shift left.

Logical shift right:
All bits are shifted to the right, with a zero being
introduced in the highest order bit, and the lowest
order bit spills over into the carry bit.

[Zero]-->[7][6]1[51[4]1[3]1[2]1[1]1[0]-->[C]

It can also be thought of as “divide by 2”, but only
for only unsigned values. As such, it is not the
same as arithmetic shift right.

Arithmetic shift left:
This is the same as logical shift left.

Arithmetic shift right:
All bits are shifted to the right, with the highest
order bit pushing it’s own value back in. The lowest
order bit overflows into the carry bit.

[7]1-=->[71061[51[41[31[2]1[1]1[0]-=>[C]

Pre and Post Increment:
It’'s just best to give examples...

EX)

IDAA 0,X ;Load A with the data at the memory address in X
ILDAA 1,X ;Load A with the data at the memory address in X+1
LDAA 1,X+ ;Load A with data pointed to by X, then inc. X
ILDAA 1,X- ;Load A with data pointed to by X, then dec. X
LDAA +1,X ;Increment X, load A with data pointed to by X
LDAA -1,X ;Decrement X, load A with data pointed to by X

Ports:

Ports are the way the microcontroller interacts with real
world devices using it’s digital I/O pins. In this class,
we only use port B and port B. Be sure to include hcsl2.inc
in your program if you are using ports.

EX)

#include hcsl2.inc

Port B:

In the Dragon-12 demo board that we use, port B is
hooked up to both the LEDs and the seven segment
displays. The LEDs displays the byte currently in port
B. This port has a register that determines whether
this port will be used for input or output. It'’s
called the data direction register, in this case,
ddrb.

EX)
LDAA #S$FF ;SFF is used to set for output mode
STAA ddrb ;Set port B to output

LDAA #%10101010
STAA portb ;Light the LEDs with 10101010

Port H:

In the Dragon-12 demo board that we use, port H is
hooked up to those really tiny, annoying to use
switches. Each switch corresponds with each bit in a
byte. It also has it’s own data direction register
which is often set to input mode.

EX)
LDAA #$00 ;$00 is used to set for input mode
STAA ddrh ;Set port H to input

LDAA pth ;Load the switch states from port H

Important: No, that’s not a typo, port H is really
called “pth” even though port B is called “portb”.

Interrupts:
Honestly, this makes zero sense, use the attached interrupt
worksheet and lab code.

Relative branching/jumping:
The offset is calculated by subtracting the destination
address with the next program counter value. (The one after
the jump instruction.)

EX) (Note the offset goes in the blank next to "26")
PC Machine Code Instruction

$3006 8B 03 ADDA #3 <---Jumping to here
$3008 73 2000 DEC count

$300B 26 BNE AGAIN <---Jumping from here
$300D <---The address of the next instruction

The calculate the offset:
$3006 - $300D = =7 = F9

General oddities:
-When doing any operation, the CCR may change depending on the
result of that operation. Shift lefts on a value that goes
negative to positive, the overflow bit (V bit) is set.

EX) CCR Bits
LDAA #%10000000 ;Before LSLA: N=1, V=0
LSLA ;A is now 00000000, N=0, v=1

-When jumping to a subroutine and using stacks, remember
that the jumpback address is pushed to the stack when you
JSR.

CSC 202
Interrupts

1. What is an interrupt?
2. Uses/Functions

3. Types

l l Exception

| Int t |Reset - non-
B SRS | maskable

i Non- “ Manual
| Maskable —
—_]

. Timer
‘ SWI | overflow
! I
I

4. Interrupt Process
¢ Disable Interrupts
* Save the Program Counter
* Save CPU registers
¢ Determine cause of Interrupt
* Get the address (interrupt vector) of the ISR from the Interrupt Vector Table
* Execute the ISR
* RTI—Return from Interrupt instruction
o Restore CPU status and PC
o Enable future interrupts
Restart the interrupted program

5. Priority

D’Ortona 1 5/17/2009

Interrupt Program

* What does this program do?
o Demonstrates the TCNT and timer overflow
Allows us to modify the speed of the TCNT
Suppose we need to count longer than SO000-$fff?
Use a second loop.
Use the switches to input the number of times the second loop will execute
Each timer overflow causes an interrupt
The LEDs will stay on for a certain number of overflows
Repeat the process with the LEDs off.
Look at the speed of the ON and OFF of the LEDs with the change of the DIPsw.

O 0 0O o0 O O O O

* Program Logic

for tofcnt = Y downto 1 ; Y set by DIPsw
for TCNT = 0 to 65,535 ;TCNT overflow
end

end

* Program Set up
o Write the code for the ISR
o Set the location of the ISR
o Setup ports
o Set register bits

Let’s look at the Flow Chart and then the code.

Timer System

Uses

* Count events

* Measure a signal

* Can be used to cause an interrupt signaling something to occur

TCNT

* 16 bit counter (50044)

e S0000-Sffff — rolls over

* Programmer can cause an interrupt on rollover

* Can extend the range of an event by using another counter

Registers and flags used by the Timer system

e TSCR1-Timer System Control Register 1 ($0046)

o TEN-Timer Enable, bit 7
o Enables the Timer System
o bset TSCR1, $80

e TSCR2 - Timer System Control Register 2 (S004d)

o TOI - Timer Overflow Interrupt Enable, bit 7
o Enables Timer System Interrupts

o bset TSCR2, $80

o bits 0,1,2 used to set a prescaler

* TFLG2 - Timer Interrupt Flag 2 Register (S004f)

TOF - Timer Overflow Flag, bit 7

Signals that an overflow has occurred

Programmer clears the flag by writing a 1 to it

bset TFLG2, $80 —flag =0

When a timer overflow occurs, flag is set to 1 by the system
Programmer must clear the flag after the interrupt

O O O O O O

Questions:

* Whatis the purpose of the Timer Module?
* What are the 3 registers used by the Timer Module?
* How do we configure these registers to allow for interrupts?

Prescaler

* 68hcs12 clock speed — 24 MHZ = 24,000,000 cycles/second
* TCNT - 16 bit counter - S0000-$ffff so 65,536 cycles to roll over. User can cause an interrupt to occur

on rollover

* Counter speed, the amount of time it takes for one rollover.
* Speed of the counter can be modified by using a Prescaler

Prescaler — bits 0,1,2 Of
TSCR2 used to modify
counter speed - TCNT

Rollover Frequency
How often does the TCNT rollover?

Number of Rollovers of the TCNT
per second

Prescaler factor

(Prescaler*#of cycles for 1 rollover)/
(#cycles/second)

(#cycles/second)/
#of cycles for 1 rollover

1 1*65,536/24,000,000 24,000,000/65,536
2%=1 65536/24,000,000 366.2 rollovers/sec
X=0 .0027306
000 one roll over every 2.73ms
32 32*%65,536/24,000,000 24,000,000/2,097,152
2%=32 2,097,152/24,000,000 11.44
X=5 87.381ms
101
64 ?7?? 64*65,536/24,000,000 24,000,000/4,194,304
4,194,304/24,000,000 5.72
174.76ms
128 ???

255 (not a true prescaler)
DIP sw=11111111 or $ff

Questions

* What s the speed of the HCS12 processor?
* Fill in the values in the table for the prescaler 128 and the pseudo prescaler 255

* How will the different prescalers affect the behavior of the LEDs?

* How would you set up the Timer System with a prescaler factor of 8?

; Exl.asm ---- Example program 1 for the Ep9S12DP256 board (c)2002, EVBplus.com

Written by Wayne Chu. Modified by Barry Walker and Lorraine D'Ortona

; Function: Demonstrates HCS12 interupts, ports, and Timer Module
#include hcs12.inc
ORG $2000
tofcnt DS 1 ;counts the timer overflows, initialized by DIPsw
ORG $3e5e ;address of the ISR will be stored at $3e5e
DW TOFISR ;address of the ISR
ORG $2100 ;program code starts here
ldaa #$ff
staa ddrb ;make port B an output port
ldaa #$00
staa ddrh ;make port H an input port

REPEAT

bset TSCR1,$80
bset TSCR2,$80
bset TFLGZ,$80
cli

ldaa pth
staa tofcnt
swi

bset TSCR1,$80

3k 3k 3k 3k 3k 3k %k ok ok 3k 3k 3k %k ok ok 3k 3k 3k %k %k %k *k %k k

BACK

ldaa #$FF
staa portb
wai

dec tofcnt
bne BACK

sk 3k 3k 3k sk sk ok ok ok 3k 3k 3k %k ok %k 3k ok sk %k %k %k Kk Kk k

ldaa pth
staa tofcnt

3k 3k 3k 3k 3k 3k %k ok ok 3k 3k 3k %k %k ok 3k 3k 3k %k %k %k *k %k k

BACK2

ldaa #$00
staa portb
wai

dec tofcnt
bne BACK2

sk 3k 3k 3k 3k ok ok ok ok 3k 3k 3k sk ok ok k ok 3k %k %k %k Kk ok k

bra REPEAT

;enable Timer Module

;enable Timer Interrupts

;clear Timer Overflow Flag
;clear interrupt bit (I) in CCR

;read from DIPsw (port H).
;initialize the timer overflow counter from DIPsw

;turn on all LEDs (port B)
;wait for an interrupt - TCNT rollover

;after ISR executes; decrement timer overflow counter
;if DIPsw value not done

;read from DIPsw (port H)

;initialize the timer overflow counter from DIPsw
;turn off all LEDs (port B)

;wait for an interrupt

;after ISR executes; decrement timer overflow counter
;if DIPsw value not done

;start over, get port H input value

******Interrupt Service Routine® ks skkskkkskkkskkkkokkokokk ok ok kk

TOFISR

NOP
swi
bset TFLG2,$80

;clear timer overflow flag

bset TFLG2,$80 ;clear Timer Overflow Flag (bit 7)

RTI ;return to statement following interrupt
;return the state of the CPU

END

10
11
12
13
14
15

0
1
2
3

8
9

A
B

0 0 0O
0 0 0 1

0 010

0O 0 1 1

0 00O
0 01
0 10
011

1
1
1
1

8

16

8192|4096(2048|1024 (512 256 | 128 | 64 | 32

