Circular Motion
Objectives: Determine relationship between linear
velocity, centripetal force and acceleration.
Equipment: stopwatch, Fc setup, mass set 
Methods:
1. 
Sketch the Fc setup. 
Label the radius, Fc, mass m, reference washer,
mass holder.  
2. 
Measure the radius with the reference washer at its
desired position.  Hang
a 50.0 g mass on the Fc set up. 
This mass represents a force Fc = mv2/r. 
Let g = 10m/s2 such that a 50.0 g mass has a
weight Fc equal to 0.5 N.
3.  Put your goggles
on now.  Whirl and
time the stopper for 10 revs in a horizontal circle. 
Be sure the reference washer does not move up and
down, and does not touch the handle.
4.  Determine the
period T (time) for one revolution, then calculate v, and 
ac.  The
radius remains constant in this lab.  
                                   
v = 2πr/T 
and  ac
= v2/r.
5.  Repeat for
various masses to get 4-5 trials (up to a maximum of 250 g).
Analysis:
1. 
Plot graphs of:
           
(a) 
Fc  vs 
ac (ac on the x-axis)
           
(b) 
v2 vs ac  
(ac on the x-axis)
2.
Describe the relationship for each graph. 
Calculate the slopes for each. 
What do the slopes of each graph represent? (Hint: look at
the units for Δy/Δx, then examine your data.)
3.
Describe how adjustments in the radius r would affect the mass=s
velocity given the same Fc.
 
radius   
0.85 m;  
C 
= 2 π r,    
T 
= time/revs,   
v 
= 
2πr / T      
Let g = 10 m/s2  
|   mass
      kg |    Fc
      (N) |   revs |   time
      (s)  | 
 T
      (s) |    v 
      (m/s) |   v2
      (m2/s2) |   ac 
      (m/s2) | 
| 0.050 |   |   |  
      7.2 |  0.72s |   |   |   | 
Back to the Brockport High School Science Department